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Abstract

The neuritogenic response to a variety of environmental cues is an essential attribute

of neuronal differentiation. Therefore evaluation of neurite outgrowth is a valuable tool

for the study of the molecular mechanisms controlling differentiation of neuronal cells and

remodeling of neuronal extensions important for neuronal plasticity. Manual analysis of

neurite length is a most time consuming step if the goal is to process numerous series of

images. In the thesis, an algorithm for digital analysis of images of primary cultures of

dissociated neurons immunostained for neuronal markers using a fluorescent tag is pre-

sented. The algorithm includes the following operations: ridge detection, skeletonization

and blob extraction. The automated object recognition method for estimation of neurite

length was compared with a previously developed stereological procedure employing pri-

mary cultures of rat hippocampal and cerebellar granule (CGN) neurons. Differentiation of

hippocampal neurons was induced by treatment with various concentrations of the S100A4

protein, whereas neurite outgrowth in CGN cultures was stimulated by treatment with an

NCAM mimetic peptide, P2, and an FGF mimetic peptide, 10F10, in the absence or pres-

ence of various concentrations of an inhibitor of the FGF receptor, SU5402. In all cases it

was found that the values of neurite lengths obtained employing the automated approach

positively correlated with those obtained using the stereological method with correlation

coefficients of 0.82, 0.90, and 0.91, respectively, indicating that the developed algorithm

provides a precise and efficient method for the estimation of neurite outgrowth in cultures

of primary neurons.

Furthermore, a set of software packages was developed for the research, including both

end-user applications and development toolkits. The end-user programs such as PrLenS,

MorphometryI, ManCen, and PrAverB were extensively used in my project and as well

as by other researchers at the Protein Laboratory (Kolkova et al., 2000a and 2000b, Køh-

ler et al., 2003, Ditlevsen et al., 2003, Soroka et al., 2003, Neiiendam et al., 2004, Ped-

ersen et al., 2004). The applications were developed using the toolkits Prima and IPA
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(the latter is named after an abbreviation of ’image processing algorithms’), stand-alone

software packages for the Perl language, that provide graphical user-interface and image

processing functionality with features not found in any other Perl toolkits. Prima is a

platform-independent Perl graphic toolkit with an object oriented interface. Its features

include (i) an extensive set of Perl-coded interface elements (widgets), (ii) a wide range of

image types and conversion routines, and (iii) a visual builder. IPA is an image processing

toolkit that provides a set of common two-dimensional operators, and it is based on the

Prima toolkit.

In this thesis, a fully automated procedure for quantification of neurite outgrowth is

described. The procedure is based on a new computation method, which in turn is based

on a general ridge enhancement technique and analysis of pixel intensity distribution in

fluorescent images of primary cultures of neurons immunostained for a neuronal marker,

GAP-43. The software used for the quantification of neurite outgrowth was implemented

using Prima and IPA toolkits.
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1 Introduction

Neuronal differentiation is a fundamental aspect of the embryonic development of the

nervous system. The important morphological determinants of neuronal differentiation are

initial sprouting of processes (neurites) followed by elongation of axons and pathfinding

and also by dendritic arborization ultimately resulting in the formation during develop-

ment of a complex neuronal network. Numerous environmental cues such as extracel-

lular matrix-associated neurite promoters, cell adhesion molecules, neurotrophic factors,

proteoglycans etc. are involved in controlling the initiation and guidance of a neurite

(Kiryushko et al., 2004). Neuronal differentiation and neurite outgrowth are also impor-

tant features of the processes of neuro-regeneration following traumatic injury in the

peripheral (PNS) and central nervous system (CNS) and recovery after an ischemic in-

sult. In the CNS, neuro-regeneration is manifested by proliferation of neural stem- and

progenitor-cells, their migration and differentiation into neurons and by neurite outgrowth

(McKerracher, 2001; Forbes et al., 2002). Finally, the constant adaptation of an individ-

ual to the environmental demands continuous changes in the morphology and function

of synapses including the establishment of new synapses and the removal of functionally

obsolete synapses. These processes which are pivotal in e.g. memory and learning require

the capacity to extend and retract neurites.

Identification of environmental cues and also artificial compounds promoting neuronal

differentiation and neurite outgrowth is of importance for our understanding of the molecu-

lar mechanisms underlying neuronal differentiation and pathfinding, and also for the devel-

opment of drugs for the treatment of neurodegenerative disorders. Cell cultures of primary

neurons or neuronal cell lines are often used for this purpose. The simplest and fastest

method to monitor the effect of compounds on neuronal differentiation and plasticity of

neuronal processes is morphometric analysis of neurite outgrowth in cell culture. This

approach is also useful to study the signal transduction mechanisms underlying differenti-
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ation of neurons. Recent advances in modern microscopy using a computerized microscope

workstation have facilitated morphometric analysis of neuronal cell cultures dramatically.

The microscope table positions, filter wheel changes, auto-focusing and the frame grabber

for time-lapse video recording all can be controlled by special software allowing fully auto-

mated image sampling from multiple microscopic fields. However, the time-consuming step

in the evaluation of neurite length is the analysis of multiple recorded images, which in gen-

eral consists of retrieving images one at a time and tracing neuronal processes by means of a

computer mouse. Some years ago a procedure for quantification of neurite outgrowth based

on stereological principles was developed at the Protein Laboratory (Rønn et al., 2000).

This stereological method essentially is based on use of specific sampling rules and an un-

biased counting frame incorporated into a software package PrLenS. These modifications

allow reduction of the time spent on measurements of the neurite length to 20% of the

time required for the manual neurite-tracing analysis (Rønn et al., 2000). In this thesis a

fully automated procedure for quantification of neurite outgrowth is described. The pro-

cedure is based on a new computation method, which in turn is based on a general ridge

enhancement technique and analysis of pixel intensity distribution in fluorescent images of

primary cultures of neurons immunostained for a neuronal marker, GAP-43.
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2 Background

2.1 Factors regulating neurite outgrowth

In vertebrates, the nervous system develops from two cell complexes of ectodermal ori-

gin, the neural tube and the neural crest. The neural tube is the source of the CNS, while

the neural crest is the source of the majority of neurons and glial cells in the PNS. During

development of the PNS, cells from the neural crest undergo a number of transformations

leading to their differentiation into various types of neurons and glial cells. Neural pre-

cursors, the neuroblasts, migrate out of the neural crest, differentiate, and assemble into

a functional network by growing dendrites and axons (collectively named neurites) which

make multiple specialized contacts (synapses).

Neurite outgrowth proceeds by the dynamic behavior of a specialized part at the tip of

a process, called a growth cone. The growth cone at the end of the neurite can advance

approximately 1mm per day. The growth cone is a broad, thickened part of the neurite

with a number of long thin filopodia. Filopodia constantly extend and retreat, guiding

the growth cone. The migration of a growth cone results in neurite elongation, while its

splitting creates a branch point. The migration can be directed by selective adhesion,

properties of the substratum, and diffusible molecular cues (Alberts et al., 1989).

The process of neurite formation is usually triggered by the binding of a neuritogenic

ligand to its receptor and the subsequent activation of the corresponding intracellular sig-

nalling cascades. A number of substances promoting neurite extension has been identified,

along with compounds retarding and prohibiting the outgrowth. Both attractive and re-

pellent guidance molecules exist, many of these possessing both properties depending on

cell type and conditions (Kiryushko et al., 2004).

The processes of neural development and regeneration are based on the ability of axons

and dendrites to grow in a highly persistent and directed manner. This is accomplished by
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the patterns of attractant and repellent activities changing both in space and time. To nav-

igate between the guiding cues, the growth cone and filopodia possess cell-surface receptors

for extracellular signals, so that the recognition of signalling molecules by the growth cone

drives the neurite toward the appropriate target cell. The extracellular signalling cues can

either attract or repel growth cones, and operate either at close range or over a distance

(Tessier-Lavigne et al., 1996).

2.1.1 Signals originating from the extracellular matrix (ECM)

Various molecular components of the ECM regulate growth-cone movement and mor-

phology of early neurites.

Glycoproteins belonging to the laminin, fibronectin, and tenascin protein families are

known to promote neurite outgrowth. Laminins constitute a family of proteins found

largely in the basal laminae. They play a major role during neuronal development, binding

with various sites to collagen, and specific non-integrin and integrin receptors. Binding

of laminin to integrin receptors triggers intracellular signalling. Also, laminins are found

to serve as attractive guidance cues and as neurite growth promoters (Tardy, 2002). Fi-

bronectins are soluble multi-adhesive ECM proteins capable of binding to a multitude

of cellular and ECM molecules (Ruoslahti et al., 1996). In the NS fibronectins primarily

target the integrin receptors, initiating various intercellular signalling processes and conse-

quently affecting cell adhesion and migration (Choung et al., 2002). Tenascins constitute a

family of ECM glycoproteins which induce neuritogenesis of different types of neurons. The

neuritogenic effect of tenascin C was shown to be mediated by both direct and indirect inter-

actions with cell surface integrins and cell adhesion molecules (CAMs)(Rigato et al., 2002).

The family of glycosaminoglycans is represented by molecules carrying large polysac-

charide chains, of which neural cells express mainly heparan sulfates, hyaluronate, and

chondroitin sulfates. Heparan sulfates and hyaluronate promote neuritogenesis, while

chondroitin sulfates act as outgrowth inhibitors. Heparan sulfates promote axonal out-

growth and pathfinding (Halfter, 1993) and participate in establishing of axonal pathways

(Joseph et al., 1996).

Hyaluronate is a major component of the ECM around migrating and proliferating

cells. By binding to the surface receptor CD44 hyaluronate activates intracellular signalling

cascades and promotes cell growth and migration. It has also been shown to inhibit neurite

outgrowth in vitro (Oohira et al., 2000). The heparin-binding growth-associated molecule

(HB-GAM) is a secretory ECM-associated protein, shown to promote outgrowth of neurites
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in the CNS and PNS (Raulo et al., 1992; Pavlov et al., 2002).

2.1.2 Trophic factors

The growing neurons compete for specific trophic polypeptides, secreted by target tis-

sues (Raff, 1992). The selective survival of neurons is regulated by a number of growth fac-

tors belonging to the neurotrophin family, and the first discovered neurotrophin was termed

nerve growth factor (NGF) (Levi-Montalcini et al., 1961). Other members of the family

are brain-derived neurotrophic factor (BDNF), neurotrophin-3(NT-3), and neurotrophin-4

(NT-4). Neurotrophins bind to and activate two types of receptors, the tropomyosin-

related kinase (Trk) and p75NTR (Huang et al., 2001; Lee et al., 2001). Binding of individ-

ual neurotrophins activates different Trk receptors: NGF binds to TrkA, BDNF to TrkB,

and NT-3 binds to TrkC. Also, different intracellular signalling cascades are triggered by

neurotrophins, including the pathways involving phospholipase C (PLC), Ras-MAP ki-

nase, and PI3-kinase (Markus et al., 2001; Sofroniev et al., 2001). p75NTR also binds to

all neurotrophins but with lower affinity. When Trk and p75NTR receptors are activated

simultaneously, the specificity of the binding increases. Interestingly, binding of NGF to

p75NTR without binding to TrkA may promote cell death (Patel et al., 2000).

The family of fibroblast growth factors (FGFs) plays a critical role in the development

of the CNS (Murphy et al., 1990). In the developing NS, neurons predominantly express

the FGFR1, and glial cells the FGFR2. The binding of FGFs to FGFRs leads

to receptor dimerization which allows autophosphorylation of their tyrosine

kinase domains (Williams et al., 1994). These events in turn activate a number of

signalling cascades, which stimulate neuronal cell differentiation and survival

(Desire et al., 1998; Pataky et al., 2000). Neurite outgrowth is simulated by FGF via

activation of a second messenger pathway that requires calcium influx into neurons via

Ca2+channels (Archer et al., 1999).

2.1.3 Guidance molecules

Studies in vivo indicate that neurons can grow towards distant targets and do so in a

stepwise fashion. The intermediate targets that guide the growth cone on its way to the

final destination are various molecules, acting as attractants or repellent cues depending

on the cell type and physiological conditions. The most studied guidance molecules are the

families of netrins, semaphorins, ephrins, and slits.
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The family of Netrin proteins functions as both attractive and repellent cues by bind-

ing to the UNC-40 and UNC-5 receptor proteins (Livesey, 1999; Keleman et al., 2001;

Gitai et al., 2003).

Semaphorins are a large family of transmembrane proteins with bi-functional

properties. Semaphorins act as inhibitory cues by activating the Rho-family of GTPases

(Jin et al., 1997), and as attractive cues by activating MAPK signalling pathways

(Pasterkamp et al., 2003).

Ephrins are developmentally regulated molecules that contribute to axonal pathfind-

ing through their binding to the Eph receptor tyrosine kinases. Ephrins mainly act

as inhibitory cues (Henkemeyer et al., 1996), but some members act as attractive cues

(Brownlee et al., 2000; Moreno-Flores et al., 2002) in axon guidance processes in the brain.

Slits are large bi-functional proteins acting as repulsive cues for axons in the CNS

(Ringstedt et al., 2000; Sang et al., 2003).

2.1.4 Cell adhesion molecules (CAMs)

Adhesion of neighbouring cells is a primary feature of the architecture of many tissues,

including CNS. CAMs enable neurons to adhere tightly and specifically with cells of the

same or similar type. Most of CAMs mediate neurite outgrowth by triggering intracel-

lular signalling cascades. There are four major families of CAMs: integrins, cadherins,

immunoglobulin superfamily CAMs (Ig CAMs) and selectins.

Cadherins mediate calcium dependent homophilic binding, whereas integrins require

both calcium and magnesium for their function. Ig CAMs are defined by the presence of one

or more copies of the Ig homology modules which have a characteristic Ig-fold, a compact

structure with two cysteine residues separated by 55-75 amino acids (Vaughn et al., 1996).

The selectins are not involved in neurite outgrowth.

Three main CAMs in the vertebrate nervous system, N-cadherin of the cadherin family,

and L1 and NCAM of the Ig superfamily, are strong stimulators of neurite outgrowth. They

activate the elongation of processes via various signalling cascades, where the most common

are pathways activated via the FGF receptor (Perron et al., 1999; Kolkova et al., 2000a).

N-cadherin mediates cell adhesion both in developing and mature tissues, participates

in a number of morphogenetic events (Ivanov et al., 2001), and is an important regula-

tor of neurite outgrowth, axonal guidance and fasciculation during neural development

(Shiga et al., 1991).

The neuronal cell recognition molecule L1 is expressed in the developing
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NS and has a crucial role in the NS maturation, including axonal outgrowth

(Brummendorf et al., 1998). In vitro, L1 strongly stimulates neurite outgrowth

(Doherty et al., 1992; Doherty et al., 2000).

In the developing NS, NCAM appears early in embryonic development. It is detected

at the blastoderm stage, and later it is expressed on the derivatives of all three germ

layers (Crossin et al., 1985; Edelman, 1986). In the mature organism, NCAM is mainly

expressed in tissues of neural origin, although some non-neural tissues continue to express

low amounts of NCAM throughout life. In vitro, NCAM strongly stimulates neurite out-

growth (Doherty et al., 1992).

2.1.5 Inhibitors of neurite outgrowth

A number of molecules are known to cause growth cone collapse. During normal de-

velopment, the inhibitory cues assist the correct wiring of the NS by repelling growing

neurites from certain areas and abrogating outgrowth after the development is complete.

In the CNS, contrary to the PNS, axons do not re-grow after damage, primarily due

to inhibitory molecules produced by oligodendrocytes, especially during the response to

CNS injury. The most studied inhibitory proteins are chondroitin sulfate proteoglycans

(CSPGs), myelin-associated protein (MAG), and Nogo-A.

CSPGs are powerful blockers of neurite outgrowth and one of the

best characterized inhibitory molecules of axon guidance in the CNS

(Hartmann et al., 2001; Morgenstern et al., 2002; Jones et al., 2003). CSPGs such as

neurocan and phosphacan can also bind growth factors (bFGF), and several cell adhesion

molecules (Retzler et al., 1996; Rauch et al., 2001).

MAG specifically induces growth cone collapse by interacting with p75 and GT1b recep-

tors (Vinson et al., 2001). However, MAG is also reported to stimulate neurite outgrowth

from young neurons (Turnley et al., 1998).

NogoA is a powerful CNS myelin inhibitor. It contains three functional domains: the

N-terminal region, the C-terminal region (Nogo66) and amino-Nogo; they all strongly

inhibit neurite outgrowth (Oertle et al., 2003). Nogo66 directly activates the Rho GTPase

(Fournier et al., 2003) which results in a modification of the cytoskeleton in the growth

cone.
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2.1.6 Synthetic peptides

The study of the molecular mechanisms underlying the neurite outgrowth processes

triggered by various factors revealed that peptide motifs can mimic the effect of growth

factors and adhesion molecules on the activation of the signalling cascades leading to neurite

outgrowth. Several peptides have been shown to produce neuritogenic effects.

Peptides derived from the variable chain of antibodies against the neural cell adhesion

molecules L1 and CHL1 have been reported to promote neurite outgrowth from cerebellar

neurons, dorsal root ganglion and motor neurons (Dong et al., 2002; Dong et al., 2003).

Synthetic peptides derived from the alpha globular domain of laminin-1, AG73-chitosan

and A99-chitosan, promote neurite outgrowth of PC12 cells (Mochizuki et al., 2003). A

15-aminoacid sequence from tenascin-C, D5, has been found to promote neurite

outgrowth. The sequence is critical for the interaction of tenascin-C with neurons

(Meiners et al., 2001). A peptide sequence from Schwannoma-derived growth factor

(SDGF) termed SDGF(38-80) has been demonstrated to induce short neurite outgrowth

in PC12 cells (Takenouchi et al., 1999).

It has been shown that neurons respond to specific NCAM isoforms with an increased

neurite outgrowth. The extracellular portion of this molecule consists of five immunoglobu-

lin (Ig) and two fibronectin type III (F3) modules, where the second Ig module is a natural

ligand of the first Ig module (Kiselyov et al., 1997) forming cis-dimers of NCAM and in-

ducing neurite outgrowth. Recently, a set of NCAM-mimetic peptides triggering activation

of neurite outgrowth were identified (Berezin et al., 2004). A ligand of the N-terminal Ig

module, C3, promotes neurite outgrowth in primary hippocampal neurons and PC12E2

cells (Rønn et al., 1999; Rønn et al., 2002). Its tetramer, C3d, disrupts NCAM-mediated

cell adhesion, but activates simultaneously intracellular signalling cascades similar to those

activated by homophilic NCAM binding (Kolkova et al., 2000a), and promotes neurito-

genesis and synaptogenesis in primary neurons (Kiryushko et al., 2003). A 12-aminoacid

sequence from the FG loop of the second Ig module of NCAM, termed P2, has been shown

to inhibit cell aggregation, activate the MAPK signalling pathway and stimulate neurite

outgrowth in primary hippocampal neurons (Soroka et al., 2002).

A recently identified peptide sequence motif derived from the second F3 module of

NCAM, termed the FGL peptide (Kiselyov et al., 2003), has been shown to induce neurite

outgrowth from hippocampal, dopaminergic neurons and CGN (Neiiendam et al., 2004).
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2.1.7 Metastasis-related protein S100 A4 (Mts1)

Identification of new factors with neurotropic activity is a crucial step in understanding

the molecular mechanics behind neuronal development, plasticity, and regeneration. It

was observed that members of the S100 protein family are expressed in different patterns

during cell growth and differentiation. The observation indicated that the S100 proteins

may play regulatory roles in these processes. Indeed, S100β, a protein contained at high

levels in glial cells, was found to possess neurotrophic activity on neurons from the central

nervous system (Kligman et al., 1985).

Proteins of the S100 family were initially discovered in the brain, and thus were be-

lieved to be specific to the nervous system. However the proteins were later found in

other tissues and cells.(Donato, 2003). Intracellularly, S100 proteins interact with various

targets and function as modulators for cellular processes, such as cytoskeleton remod-

elling, cell growth, and cell differentiation (Sorci et al., 2003). Extracellularly, dimers of

the S100B protein are reported to function as neuronal survival factors and growth factors

(Winningham-Major et al., 1989; Bhattacharyya et al., 1992).

Ample evidence suggest that the mts1/S100A4 gene plays an important role in tumor

progression (Ambatsurmian et al., 1996; Li et al., 2003). It has been shown that S100 A4

(Mts1) affects cell motility and cytokinesis through its association with actin stress fibers

(Kriajevska et al., 1998). Its role in metastasis has been suggested to depend on these

effects.

Recently it has been confirmed that S100 A4 is a very efficient neuritogenic factor. The

mechanism of S100 A4-stimulated neurite outgrowth involves activation of phospholipase

C, protein kinase C, depends on the intracellular level of Ca2+ , and requires activation of

the MAPK signal-regulated kinases 1 and 2 (Novitskaya et al., 2000).
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2.2 Stereological quantification of neurite outgrowth

Stereology is a collection of tools for efficient estimation of quantitative properties

of real world structures. It is related to the areas of stochastic geometry and spatial

statistics, and allows estimation of geometric parameters of any dimension. The basic

methods are traditionally used to estimate volume ( three-dimensional (3D) parameter),

area (2D parameter), length (1D parameter), and number of objects (non-dimensional

parameter) (Russ et al., 2000).

The stereological methods have been successfully applied in the field of histology for

estimation of the number of cells, length of neuronal processes etc (Abercrombie, 1946;

Andersen et al., 2003).

2.2.1 Sampling design

Sampling in stereology is a pivotal issue, because stereological methods are concerned

with extraction of information about the total structure while only a part of it is available

for quantification. The essence of sampling is the selection of parts of the population to

infer correct conclusions about the entire population (Cassel et al., 1993). Two sampling

approaches which are used in a wide range of statistical applications, are termed the model-

based and the design-based approach, respectively. Below cell counting methods based on

the two approaches are reviewed.

2.2.1.1 Model-based approach

The model-based approach is based on information about the sampled objects

(Geuna, 2000). Models are built from available object information, such as shape or size,

and from either a priori knowledge or assumptions about probability of objects to be

sampled. If the assumptions are not robust or predictive, bias may be introduced. The

precision of an estimate can be detected from the coefficient of error from the data

themselves, although it is not possible to infer the bias from the data. Therefore, the

model-based methods have to be combined with calibration studies and correction factors.

The simple profile-based counts method is based on the assumption that the total num-

ber of objects is directly proportional to the number of cross-sectional object profiles, and

can directly be deduced from this number. In neurobiological studies this assumption does

not hold since most cells from the nervous system possess large morphological differences.
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The dependency of the simple profile-based models validity on morphology of objects be-

ing sampled is studied in (West, 1993; Coggeshall et al., 1996). Also, when sectioning of

tissue is used, eventual cell fragments count as entire cells which leads to over-estimation,

inversely proportional to the thickness of the section.

The Abercrombie method (Abercrombie, 1946) aimed to correct the over-estimation

by accounting for the section thickness. The multiplication factor T
T+H

, where T is the

mean section thickness and H is the mean cell height is applied to the raw experimen-

tal data to obtain corrected results. The model contains the assumption that H, which

is measured on the z axis, correlates with the probability of cells being sampled in the

x and y axes. Still, biases may be present with the Abercrombie method, in particu-

lar those induced by the problem of lost caps, which occurs when small parts of cells

are barely within, or have fallen out of, the section surface and therefore are not counted

(Hedreen, 1998; Hedreen, 1998). Additional bias is introduced when size, shape, and orien-

tation of cells are not taken into account (Abercrombie, 1946; Hendry, 1976). The Floderus

method (Floderus, 1944) introduces the lost-caps correction factor, but since it assumes

spherical cell configuration it can only be used for estimations of the number of spheri-

cal cell bodies (Mendis-Handagama et al., 1992). Fullman’s (Fullman, 1953) and Hendry-

Coupland’s (Hendry, 1976) corrections are free of this assumption (Smolen et al., 1983).

The empirical counting methods are free of the lost caps problem by performing a

preliminary study which is conducted so the population-specific ratio between the true

reconstructed cell number and the number of the corresponding profiles is calculated. The

model is reported to produce unbiased results (Pover et al., 1991; Hedreen, 1998).

2.2.1.2 Design-based approach

The design-based approach, contrary to the model-based, has no assumptions about

the population. Also, it enforces the equal opportunity rule, where all objects from the

population have one and the same probability of being sampled. The rule has to be observed

when selecting both sampling units and estimation rules. In theory, design-based methods

may produce unbiased (Hedreen, 1999) results without any additional correction factors

(Mayhew et al., 1996; West, 1999); in practice the total absence of bias is unattainable.

A direct sampling scheme, the simple random sampling where all possible combinations

of n sampling units have the same probability of being sampled, requires large number of

samples for achieving a sufficient precision. Series of sampling designs have been devised

to circumvent this problem. The multistage sampling deals with sub-samples, extracted
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from larger samples, which are in turn extracted from the population total. The stratified

sampling is similar to the multistage in that the population total is divided into strata that

are sampled separatedly. The systematic random sampling method consists of a systematic

selection of every nth unit of the population, starting from a randomly selected starting

point. The systematic sampling appears to be the one that best fits the requirements of

neuromorphological research (Geuna, 2000).

Series of estimators that fulfill the equal opportunity requirement for the design-based

approach were devised both in two and three dimensions. Sterio (Sterio, 1984) proposed

a physical disector probe, consisting of two parallel planes separated by a known distance,

and used for estimation of the population in the volume. Gundersen (Gundersen, 1986)

adapted the method for neuromorphological needs with the optical disector probe, where

slices are separated by focal planes. The extension of the optical disector method, the

optical fractionator, is a combination of a sampling design of a fractionator volumetric

probe with the optical disector estimator (Gundersen et al., 1988).

Traditionally IUR (isotropic, uniform, and random) sampling designs are preferred

because by definition they require no special correction for bias. However, in special cases

non-IUR designs can be successfully used (Dorph-Petersen et al., 2000).

2.2.2 Statistical principles of stereological estimation

The estimation, as the process of inferring a total of a parameter, by measuring the

parameter in parts of the total, is used widely in statistics and is directly related to the

sampling design. If the total parameter can be expressed as

X̂ =

∫

X

f(x)dx (2.1)

where X is the total, f : X → R+ is the observation for each x ∈ X, then an unbiased

Horwitz-Thompson estimator (Cassel et al., 1993) can be used to describe the relation

between a parameter available from the sample, the sampling density (probability), and

the total:

X̂ =

∫

S

f(x)

p(x)
dx (2.2)

where S ⊆ X is the sample and p(x) is the sampling probability of the individual x. In

practice, random sampling methods based on this estimator are not always efficient, and

therefore are often preferred to systematic random sampling methods (Cruz-Orive, 1993;
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Geuna, 2000). The corresponding estimator in its generic form is

X̂T = T
∑

k∈Z
f(U + kT ) (2.3)

where U is uniform random in an interval of the real axis of the length T .

The Horwitz-Thompson estimator can be used for estimation of the curve length. The

modified Cauchy-Crofton formula

L =
1

2

∫ π

0

∫

R
|{`(θ, x) ∩R}|dxdθ (2.4)

where `(θ, x) is a line with direction θ and distance x to O, R is the curve in the plane, and

| · | indicates number of elements and is essentially the total of intersections between `(θ, x)

and R. In order to employ systematic random sampling where a sample can be expressed

as

{Θ,U + kT}k∈Z (2.5)

uniform random variables Θ ∼ U [0, π) and U ∼ U [0, T ] where T ∈ R+ are introduced.

Here, the sample parameterizes a set of parallel and equidistant lines

{`(θ, x) : (θ, x) ∈ {Θ,U + kT}k∈Z} (2.6)

and is essentially the total of intersection points between the curve and the set of equidistant

and parallel test lines with randomly chosen direction and position. The curve length

estimator is thus

L̂ =
1

2
πTN (2.7)

where N is the number of intersections and T is the distance between test lines. In 3D,

curve length is estimated correspondingly by 3D probes (Mouton et al., 2002).

The variance for the systematic random sampling cannot be estimated by a standard

formula, since the observations are neither independent nor identically distributed. In

terms of covariogram g of f ,

g(y) =

∫

R
f(x)f(x+ y)dx (2.8)

the variance of X̂T may be interpreted as the difference between the integral of g and its
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discrete approximation (Gundersen et al., 1999):

Var(X̂T ) = T
∑

j∈Z
g(jT )−

∫

R
g(y)dy (2.9)

The variance of X̂T can be estimated by transitive methods

(Matheron, 1965; Matheron, 1971) for small T . For the worst case, where the

measurement function is not continuous, the magnitude of the approximated variance is

of the order T 2 (Kiêu, 1997; Kiêu et al., 1999).

2.2.3 Sampling methods in neurobiological research

2.2.3.1 Cell counting

Both model-based and design-based counting methods are traditionally used to acquire

the number of cells in biological tissues. In 3D estimation the counting of biological par-

ticles is performed by various modifications of design-based methods, the disector and the

fractionator, which are based on unbiased principles (Mandarim-de-Lacerda, 2003).

The fractionator is a method for estimation of particle number (Gundersen et al., 1988).

The principle of the fractionator is that the population is partitioned, and then a known

fraction is sampled, the fraction is partitioned and the sub-fraction is taken. This process is

repeated until the final sub-fraction is considered appropriate for the analysis. The estimate

for the population total is the parameter observed from the final sub-fraction multiplied

by the inverse fraction of sub-samples.

Another unbiased estimation method, the disector (Sterio, 1984), can also be used for

cell counting. A schematic representation of the disector is given in Figure 2.1.

The exclusion lines and planes in the disector method provide independence of the

morphological variation between particles and against counting the same object two or

more times. The sections can be both physical and optical, and the principles of the method

can also be applied to counting planar objects in 2D. The schematic representation of the

method is given in Figure 2.2.

The randomness requirements, where there are no selected or consistent placement

of measurement regions, must be observed at all time. In the in vitro neuronal culture,

which is characterized by sparseness of individual cells, no preference over registration place

because of clumping, sparseness, or other subjective criteria must be made.
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Figure 2.1. Schematic representation of the disector.
The unbiased counting frame is projected at the section volume, where two frame sides are
parts of the section planes, and one of them is the exclusion plane. In the example, the
lower plane is selected as the exclusion plane, and the particles that cross the plane (object
3) or the exclusion lines (object 4) are not counted. Thus, only object 2 is to be counted,
as object 1 is fully within the section and is not representative.

Figure 2.2. Schematic representation of the method for object counting in 2D.
The unbiased counting frame is superimposed on the planar image. Particles that cross the
exclusion lines are not counted. Here, objects 1 and 2 are to be counted, whereas objects
3 and 4 cross exclusion lines and are excluded.
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Figure 2.3. Curve length estimation by counting intersections with the lineal sampling
grid.

Figure 2.4. Curve length estimation by counting intersection events with isotropic curvi-
lineal sampling grids.
The sampling grid on the left is constructed from parallel circular line probes. The sampling
grid on the right consists of a set of disjointed cycloid curves.

2.2.3.2 Neuritic length estimation

Estimation of neuritic length in 2D is based on treatment of neurites as ideal lines that

are counted by estimation of the number of intersection events with a sampling grid. If

the sampling grid is constructed from a set of parallel equidistant test lines, then the curve

length estimator L̂ = 1
2
πTN is used, where N is the number of intersections and T is the

distance between lines. An example of a lineal sampling grid is given in Figure 2.3.

Typically, neuronal cultures do not have any intrinsic orientation; but in case they do,

the isotropy requirement does not hold, and therefore the stereological design must provide

isotropy. In practice compensation is either obtained by rotating on the image acquisition

stage, or a variant of the lineal sampling grid is used, where straight lines are replaced

with circular or cycloid features, either as lines or as disjointed curves (see Figure 2.4).

Cycloid sampling grids are typically used in 3D line length estimation methods, because

grids constructed from circular curves do not provide unbiased measurement.
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Figure 2.5. Simultaneous estimation of number of cells and neuritic length.
The number of cells is counted with respect to the unbiased counting frame. The cell
body marked black is not counted as it touches the exclusion line. Neuritic length is
estimated from the number of intersections between the neurites and the sampling grid.
The normalized average neuritic length is a ratio between the estimated total neuritic
length and the estimated total number of cells.

2.2.3.3 Combined set-up

Since neuronal cells in cultures typically are interconnected, the estimated neuritic

length is more useful when counted per-cell, or as normalized neuritic length

L̄ =
L

C
(2.10)

where L is an estimate of the total observed neuritic length, and C is an estimate of the

total number of cells. For efficiency, the counting frame and the sampling grid can be

combined. The combined setup depicted in Figure 2.5 is minutely described in Rønn et al.

(2002) where individual rules for both unbiased cell counting and length estimation apply.
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2.3 Quantification of cell morphology based on image

analysis

Manual methods for quantification of biological features are dependent on the sub-

jectivity of an operator and psychological factors such as stress and fatigue. Therefore

it is preferred to conduct quantitative studies by employing non-subjective image analy-

sis techniques for segmentation of a variety of structured features. In particular, quan-

titative analysis of cell cultures has a long history (Macagno et al., 1979; Connor, 1986;

Smith et al., 1996; Sack et al., 2003). The utilization of image processing for analysis of

biological structures is an active research field, and new studies report successful application

of image processing techniques for quantification of neuronal outgrowth (Dima et al., 2002;

Weaver et al., 2003).

The automatic quantification methods are based on various image processing algorithms

that almost always require preliminary tuning before they can be applied to the acquired

data. The algorithms for extraction of desired features, such as neurites or cell bodies

employ various models for representing the feature in the feature space of the experiment,

which is defined primarily by biological variability of cells and image recording conditions.

Neural cells can crudely be modeled as a combination of circular blobs (cell body) and

curvilinear features (neurites), and therefore the majority of neurite outgrowth quantifi-

cation frameworks target these as features of interest. Some feature-based approaches are

described below.

2.3.1 Segmentation methods

When features in images can directly be approximated by the corresponding pixel in-

tensity, image segmentation methods can be used for feature extraction. The segmentation

methods divide pixels into categories, depending on some property of one or more pixels in

an image. Depending on segmentation rules, the pixels which belong to the desired features

in the image are marked with an unique identifier, directly available as an estimate of the

desired feature.

A group of thresholding methods performs classification for each pixel in the image using

threshold values and a set of decision rules based on the pixel value itself, its local vicinity,

or a global image parameter. Gray-level thresholding is the simplest but often effective

method of image segmentation (Russ, 1995), since lighting in experiments often can be set
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up so the only segmentation needed is the thresholding. More elaborate methods operate

on the shape of the image histogram and select a threshold value depending on the position

of histogram peaks, or seek the optimal solution to a certain function reflecting the seg-

mentation result (Haralick et al., 1985). Non-parametric Otsu thresholding (Otsu, 1979)

maximizes the ratio of the between-class variance to the total variance. Parametric thresh-

olding methods operate on the assumption of normality of distribution, and they aim at

the minimization of the probability of a false positive classification, by assigning a pixel

to a class with maximum decision function response for it. Parametric minimum-distance

thresholding methods try to estimate the distribution parameters by fitting the intensity

histogram; maximum-likelihood methods estimate the set of parameters that maximize the

probability of observation of the pixel intensity distribution (Titterington et al., 1985).

Region-based segmentation methods divide the image into several non-overlapping re-

gions, based on a selected homogeneity criterion, such as the average intensity value or the

texture energy. Regions are formed either by accumulating pixels around a“seed” in region-

growing methods (Zucker, 1976), or decomposing an entire image into smaller parts until

homogeneity condition holds in so called split and merge methods (Horowitz et al., 1975).

The variational approaches segment the image so that a homogeneity criterion is maximized

within regions and minimized along region boundaries (Mumford et al., 1988). The varia-

tional methods have been combined with active contours (Blake et al., 1988) that employ

a propagated deformation of region boundaries to satisfy the minimization requirement

(Chan et al., 1999). The region-based segmentation methods combined with the scale-

space paradigm by accounting for the correspondence between structures extracted at dif-

ferent scales, are shown to aid over- and under-segmentation, and yield partitioning closer

to visual perception for the generally orderless images (Olsen et al., 1997; Shi et al., 2000).

Further development of thresholding methods, which generally are of single modal-

ity, are image classification methods that are used for segmentation of multiple images

representing features from the same feature space. The classification algorithms are ei-

ther unsupervised or supervised; the latter require a priori information, typically a pre-

defined set of classes with samples. The unsupervised methods include threshold-based

parallelepiped method, objective function-based minimum distance, k-means, and fuzzy

c-means methods (Dua et al., 1973; Bezdek, 1981). Supervised methods include proba-

bilistic Bayes and k-nearest neighbour methods (Dua et al., 1973), as well as methods

originating from the field of artificial intelligence, such as decision trees and artificial neu-

ral networks. These methods can be used for image segmentation when large number of
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samples are available (Kamber et al., 1995; Tatsumi et al., 2002; Zheng et al., 2004). The

Bayesian matching is employed in methods based on deformations of region boundary

(Zhu et al., 1996; Sifakis et al., 2002).

Segmentation methods are seldom used alone, but rather at a pre-processing stage

before further analysis in order to emphasize the desired features or reduce noise.

2.3.2 Mathematical morphology methods

Mathematical morphology operates with point sets, their connectivity and shape, as-

sumed to model real images (Serra, 1982). A morphological transformation Ψ is given by

the relation of the point set A (image) with point set B (structuring element). For example,

morphological dilation combines two point sets A and B using vector addition in a result

that is a set of all possible vector additions of pairs of elements, one from each of the sets

A⊕B = {p : p = a+ b, a ∈ A and b ∈ B} (2.11)

where a and b represent point set elements (pixels) as vectors. See Section 5.2.3.3 for the

detailed formulation of some of the morphological operators.

Morphological operators are used mainly for image pre-processing, segmentation, ex-

traction of object structure, and for description of quantitive parameters of an object such

as area and perimeter. These tasks are directly applicable in the problem domain of analysis

of microscopy images of cells.

Usually morphological operators are used together with other image processing

algorithms. For example, segmentation techniques such as grayscale watershed

transform (Vincent et al., 1991) are demonstrated to be used for cell quantification

(Ranefall et al., 1997; Latson et al., 2003). A set of elementary morphological operators,

including erosion, dilation, thinning, and reconstruction, as well as operators derived from

them are used in a wide range of image analysis algorithms.

The morphological thinning operation converts an object into its representative skele-

ton preserving its topology. Variants of thinning algorithms are known, mostly based

on a medial axis transformations (Lam et al., 1992). The thinning operation is an effi-

cient tool for extracting object parameters such as length and connectivity. It is used in

several algorithms for analysis of skeletonization of the cell body (Malgrange et al., 1994;

Treubert et al., 1998). Figure 2.6 depicts result of the application of a thinning operation

to a pre-processed and binarized microscopy image of neurites.
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Figure 2.6. Morphological thinning applied to a binarized image of a stained neuronal
culture.
On the left: an image recorded from the microscope. In the middle: an image converted
to a binary form using the fixed threshold. On the right: the result of a skeletonization
algorithm applied to the binarized image.

2.3.3 Edge-based techniques

On microscopy images neurites often manifest themselves as curvilineal structures, with

widths significantly lesser than their lengths. Moreover, recording conditions usually can

be adjusted so that neurites appear in contrast to the image background. Various im-

age processing operators can assist in recovering the lineal or other features by analyzing

magnitudes that correspond to the edge strength in the image.

A set of differential image processing operators, also called edge-detectors, calculate the

edge magnitude from the difference between neighbouring pixels. The most known are the

Marr-Hildreth, Sobel, Prewitt, and Canny edge detectors (Russ, 1995). In combination

with thresholding and mathematical morphology-based techniques edge detectors can be

used to extract various features from biological images (Jap et al., 1991), in particular

to quantify neurite outgrowth (Bilsland et al., 1999). Edge-based techniques targeted at

recovery of continuous feature outlines can be applied either to the results of edge detectors,

or directly to the original image.

Ridge detection methods target ridge structures, defined similarly to edges on intensity

images (Haralick 1983; Eberly et al., 1994). The local properties of an image are used to

determine the strength of ridge points, which as well as information about edge points,

can be used in higher-level image analysis. In terms of Gaussian function, the defini-

tion of edges and ridges is correspondingly based on the first and second derivatives of a

Gaussian function (Lindeberg, 1998); other definitions of ridges exist (Crowley et al., 1984;

Colchester, 1990).

Hough transform (Hough, 1962) allows extraction of curves described by paramet-
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ric functions, such as straight lines, circles, ellipses, etc. Many variations of the orig-

inal transform exist, for example, the normalized Hough transform is used when im-

age dimensions inflict bias over the detected features (Hansen et al., 1997). The gen-

eralized Hough transform is used when the parametric description of the desired fea-

ture is not known (Ballard, 1981). Methods based on the Hough transform are used for

quantification in a wide variety of biological applications, in particular for cell counting

(Thomas et al., 1992; Barber et al., 2001).

Border-detection methods recursively traverse the input image and construct a bor-

der as a linked pixel chain, following some criteria. The simplest border detector follows

the maximum magnitude in the neighbourhood. More advanced methods such as graph

searching and methods based on dynamic programming use cost functions to navigate

the direction of the border construction (Martelli, 1972). Combined with a priori knowl-

edge about the desired features methods, based on dynamic programming are successfully

used in angiography to recover outlines of arteries and heart ventricles (Sonka et al., 1994;

Geiger et al., 1995). For reconstruction of neurite outgrowth, a track finding pattern recog-

nition algorithm has been used on pre-processed images (Ford-Holevinski et al., 1986). Re-

cently, algorithm for automatic extraction of neurite outgrowth based on ridge tracking

algorithm was successfully used on images of retinal explant culture (Weaver et al., 2003).

In cases when interaction of an extraction algorithm with an expert is possible,

semi-automatic methods can be used. For example, the live-wire paradigm

(Barrett et al., 1997) which partially is driven by a border-detection algorithm and

partially interactively by a human expert. Recently a live-wire setup combined with a

neurite extraction algorithm based on approximation of a neurite as a Gaussian ridge has

been reported (Meijering et al., 2004).

2.3.4 Multi-scale approaches

Image processing operators work on pixel level, and their parameters depend on the

size of the detected features. In general it is not known how to interpret an image on

the pre-processing stage, so in order to solve the problem, the phenomenon is observed

at different resolutions, or scales, and at each a formal model is created (Witkin, 1983;

Koenderink, 1984; Sporring et al., 1997; Sonka et al., 1998). The idea of scale is funda-

mental in Marr’s 2D edge detection technique (Marr, 1982) where a particular scale is

created as a result of convolution of the original image with a Gaussian kernel of the

corresponding size,
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G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2.12)

where σ is the standard deviation of the normal distribution. It is related to the scale

parameter t as

t = σ2 (2.13)

so that for any image f its scale-space representation L at the scale t is

L(·; t) = G(·; t) ∗ f (2.14)

Canny’s edge detector (Canny, 1983; Canny, 1986) processes an image at different scales

by convolving it with a 2D Gaussian function of corresponding σ values, and locates the

edge by differentiating the result directionally. The edge location corresponds to the local

maximum of the image f convolved with the first derivative of Gaussian in the direction

n:

|n| = 1 (2.15)

Gn = n · 5G (2.16)

∂

∂n
Gn ∗ f = 0 (2.17)

The resulting edges at multiple scales are aggregated.

Canny’s method was extended by the Lindeberg’s approach, where edges are defined as

intersections of two zero-crossing surfaces in scale-space (Lindeberg, 1998). In the method

derivatives are normalized with respect to the scale t

∂ξ = tγ/2∂x (2.18)

where γ is normalization parameter of edge strength with respect to scale, favoring the

edge diffuseness versus the spatial extent of the edge model. Maxima over scales of the

normalized derivatives are used for automated scale selection, and extracted edges with a

strength above a certain threshold are aggregated. The approach can also be used for ridge

detection, where ridges are observed in zero-crossings of the second derivative instead of
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the first. In terms of differential geometry a ridge is defined as

Luv = 0 (2.19)

L2
uu − L2

vv > 0 (2.20)

where L are local derivatives in a(u, v) Gauge coordinate system, which is related to Carte-

sian system through partial derivatives,

∂u = sinα∂x − cosα∂y (2.21)

∂v = cosα∂x + sinα∂y (2.22)

and is characterized by the fact that one of two first-order derivatives Lu is zero, and v is

the gradient direction.

Another approach uses 3D wavelet transform for edge extraction across scales with fixed

scales (Dima et al., 2002), and is reported to be successful for quantification of neurons

from confocal microscopy images.
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2.4 Implementation

2.4.1 Programming language

End-user programs performing the actual image processing can be viewed as consisting

of two functional parts, the back-end and the front-end. The back-end, which contains

implementation of algorithms and no user interactions, are traditionally implemented in

low-level languages as assembler or C, for the computation efficiency. The front-end pro-

vides an interface between the back-end and the user. The front-end tasks, especially deal-

ing with graphic user interfaces, are efficiently written with higher-level, object-oriented

languages, such as C++, or scripting languages such as Tcl or Perl (Lieberman, 1998).

The choice of language where the two parts are to be combined, usually favors the

efficiency, and therefore the development of the user interface is often conducted with sub-

optimal tools. One solution to the problem is to link parts written with different languages,

optimal to each parts, together (Savikko, 2003). Below i briefly describe languages widely

used for implementation of either image processing or user interface.

Machine assembler works at the lowest level directly interacting with computer’s central

processing unit (CPU). The efficiency of programs written in assembler is maximal within

a particular computer architecture, although its cost-effectiveness is very low due to the

fact that the programmer must explicitly account for each computational operation on the

hardware level. Also, assemblers are typically specific to a particular architecture and are

not portable. Nowadays, image processing programs written on machine assembler are

used in microprocessors in video-recording devices for real-time picture enhancement and

pre-processing (Kneip et al., 1995).

The languages C and C++ are standard tools for implementation of image processing

algorithms (Lindley, 1991). The majority of publicly available image analysis software is

written in C or C++. The C++ is a near-complete super-set of C, and is a popular solution

when a complex graphic user interface is to be linked with efficient back-end algorithms

(Watson, 1993). Both languages are inherently portable and independent of hardware

architecture, however the executable programs written in C and C++ are dependent on

hardware and operational system (OS), and require a relatively high cost in development,

especially where sophisticated user interfaces are involved. Also, where back-end parts

in such a bipartite software model usually are not dependent on capabilities of either a

particular OS or hardware, the front-end parts heavily depend on a graphic user interface
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(GUI) library, where the latter usually is OS-dependent.

A family of scripting languages which includes Tcl, Perl, Python, Java, Lisp, Ruby,

and others, is characterized by the fact that the programs written using these are neither

dependent on hardware architecture, nor on the operational system. With the exception of

a few platform-oriented languages, such as Microsoft Visual Basic, the scripting languages

are mostly platform-independent (Barron, 2001).

The programs written in C, or assembler, or a similar language, require an additional

step of compilation into the CPU instruction set before they can be executed. In contrast,

programs written with the scripting languages are usually executable directly in the form

of source code. The development costs using the scripting languages are also lower than

using compilable languages, which is attributed to the absence of memory leak and violation

problems, which constitute a large part of all problems in programs written in C and C++

. In particular, development costs for Perl and Python are reported to be about two times

less than for C and C++ (Prechelt, 2000).

The scripting languages are not used for implementation of efficient algorithms due

to their inherently low execution speed, because the programs are executed under a vir-

tual machine. The linking of scripting languages with software written in C and C++

is possible and desirable especially where the software is OS and hardware-independent

(Orwant et al., 1999; Wall et al., 2000).

2.4.2 Image processing software

A variety of existing generic software packages such as the commercially available Intel’s

IPL (Image Processing Library), Microsoft’s Visual SDK, Matlab, Imagtek’s REX, and

public domain ImageMagick, SciLab, and ipl98 provide a large set of image processing

operators and implementations of specifically targeted analysis algorithms for software

development in C and C++ (Digital et al., 2002; Intel). Several provide links to other

languages, for example SciLab contains the Tcl interface, and Matlab includes the Perl

distribution (Scilab).

An example of a problem-oriented image processing software is PDL, the Perl data

language toolkit (Soeller). PDL aims at integration of the scripting language Perl with

an efficient implementation of a numerical algorithm, including a set of image processing

operators.
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2.4.3 Graphic user interface software

Software packages for enabling GUI in programs are mostly large stand-alone libraries,

targeted at software development in C and C++ (Tai, 2003). These are divided in two

large groups, platform-dependent and platform-independent. While both groups can be

integrated with the scripting languages, integration of the platform-dependent libraries is

less promising since the scripting languages are inherently platform-independent.

The most popular platform-independent GUI libraries, known to be successfully in-

tegrated with one or more scripting languages, are Qt, Gtk, Wx, FLTK, and Tcl-Tk

(Tai, 2003; Blanchette et al., 2004; WxWindows). The last is a library originally created

with a strong link to the scripting language Tcl . Link packages between the platform-

independent libraries Qt, Gtk, and Wx and various scripting languages can be freely ob-

tained. In particular, Perl can be linked with these libraries using freely available software

packages (CPAN). Also, the Perl version of Tcl-Tk named Perl-Tk is freely available

(Walsh, 1999; Tk).

Perl-Tk and Tcl-Tk are unique software packages in a sense that the underlying Tk

core which is written in C and interacts with platform-specific GUI mechanisms is tightly

interrelated with the scripting language, Perl and Tcl respectively. Moreover, the Tk core

is not available without links to various scripting languages. Where Tcl-Tk is the only GUI

library available for Tcl, Perl-Tk is not unique for Perl GUI (CPAN). The fact that Perl-

Tk was originally designed to be linked with Tk, makes it preferable to software packages

linking Perl with Qt, GTK, and Wx.

36



3 Aims of the project

The primary aim of the project was to develop an automated procedure for morpho-

metric analysis of neurons in culture. It was planned to develop algorithms and subse-

quently software for automatic tracing of neuronal processes (neurites) and for cell count-

ing. Cell cultures of primary hippocampal and cerebellar granule neurons immunostained

for a neuronal marker, GAP-43, were used in the study. Finally, the results obtained

using automated recognition algorithms were compared with results obtained by using a

semi-automated stereological approach, in order to estimate the accuracy of the developed

automated method.

The secondary aim of the project was to implement a set of computer programs targeted

at various aspects of manual and automatic extraction of statistical data from recorded im-

ages of neuronal cultures. The aspects include estimation of neurite lengths, and extraction

of cell morphology and motility. A set of generic software toolkits developed within the

project for the efficient implementation of user interface and image processing applications,

was used as a basis for the programs.
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4 Materials and methods

4.1 Cell cultures

Cultures of dissociated hippocampal neurons were prepared from embryonic day 18

Wistar rats as previously described (Maar et al., 1997; Rønn et al., 2000). Cultures of dis-

sociated cerebellar granule neurons (CGN) were prepared from 7-day-old rats as previously

described (Ditlevsen et al., 2003). The neurons were plated at a density of 7000 cells/cm2

in non-coated eight-well-Permanox Lab-Tek chamber slides (NUNC, Roskilde, Denmark) in

Neurobasal medium containing 20 mM HEPES, 100 units/ml peniciline, 100 µg/ml strep-

tomycin (all from Gibco BRL, Paisley, UK), and 0.4% w/v bovine serum albumin (BSA,

Sigma-Aldrich, Copenhagen, Denmark) supplemented with B27 (Gibco BRL).

4.2 Neurite outgrowth assay

Cultures of hippocampal neurons and CGN were grown for 24 h at 370C in a hu-

midified atmosphere of 5% CO2. The cells were fixed with 4% (v/v) formaldehyde and

immunostained using polyclonal rabbit antibodies against rat GAP-43 (Chemicon Int.,

Temecula, CA, USA), and secondary Alexa Fluor goat anti-rabbit antibodies (Molecular

Probes, Leiden, Netherlands). Images of 150-200 cells were captured for each group in each

experiment using systematic random sampling as previously described (Rønn et al., 2000)

by computer-assisted fluorescence microscopy using a Nikon Diaphot inverted microscope

with a Nikon Plan 20 x objective (Nikon, Tokyo, Japan), a Videotech BZT video-camera

(Grundig Electronics, Nurnberg, Germany) and the software package Prima developed at

the Protein Laboratory (Copenhagen, Denmark). Images were stored as 768 x 576 pixel

GIF images with an 8-bit grayscale intensity resolution and a spatial resolution of 0.41

µm/pixel. The neurite length was estimated using two alternative methods, stereological
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analysis and automated image processing.

4.3 Image analysis

4.3.1 Stereological procedure

The recorded images were analyzed using the software package PrLenS developed at

the Protein Laboratory essentially as previously described (Rønn et al., 2000). A test grid

containing a certain number of horizontal lines (usually six to ten) within an unbiased

counting frame was superimposed onto images of the cell cultures. Each intersection of a

neuronal process (neurite) with a line was marked by means of a computer mouse. The

number of cells was also counted by marking neuronal cell bodies located within the borders

of the counting frame. The neurite length per cell was calculated using the equation

L =
1

2C
πTN (4.1)

where L is the absolute length of neurites (µm), T is the vertical distance between the

test lines used, C is the number of neurons and N is the number of neurite intersec-

tions. Estimates of neurite length obtained using the described stereological procedure

have been reported to correlate well to estimates obtained using manual tracing of neurites

(Rønn et al., 2000).

4.3.2 Automated image processing

Neurites appear as a network of thin ridge structures with or without gaps, connected

or not connected to the cell body. The procedure for automated image processing is based

on the use of a ridge filtering algorithm as well as skeletonization and blob extraction

algorithms. The ridge filter algorithm is a combination of directional second derivatives of

the two-dimensional Gaussian function:

(n · 5)2G (4.2)

where n is the filter direction, and

G(x, y) =
1

2πσ2
e−

(x2+y2)

2σ2 (4.3)
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where σ is the standard deviation of the normal distribution. Here, the local ridge

direction is determined by the direction n of a filter which gives a maximum response

when applied to the image.

A single-scale Gaussian ridge detector proposed by Lindeberg (Lindeberg, 1998) is for-

mulated to include influence of Gaussian blobs on the detection output, so the detection

of both types of structures proceeds simultaneously:

N = t4(Lxx + Lyy)((Lxx − Lyy)2 + 4L2
xy) (4.4)

where L terms are directional second derivatives of the image scale t

t = σ2 (4.5)

L(·; t) = G(·; t) ∗ f (4.6)

and N is a measure of ridge strength on image f . Application of the filter produces an

image with significantly higher intensity values in pixels situated at ridges and center of

blobs.

The pixels with intensity values near the average of the image background are discarded,

and the image is binarized so only the pixels corresponding to the desired features remain:

O(x, y) =

{
1 if I(x, y) > avg(I(x, y) ∈ background))

0 otherwise
(4.7)

where I(x, y) is the pixel value of the filtered image, and O(x, y) is the value of the

corresponding pixel as a result of binarization. The process is straightforward since the

average value of the image background value in the filtered image is significantly less than

the average value of the features (ridges and blobs).

avg(I(x, y) ∈ background)� avg(I(x, y) ∈ features) (4.8)

Further, the binarized image is subjected to subsequent morphologic erosions, corre-

sponding to the magnification scale and average breadth of neurites. The average neurite

breadth in pixels is supplied by an expert, where the values is based on the morphology,

and the biological variability of the cells, and the magnification at which the image is

recorded. The classification of the feature in question is based on this value, and if a fea-

ture is broader than the expert-given value, it is considered as a cell body, otherwise as a

40



neurite. Representative centroids are subtracted from the original skeletonized binarized

image, where the resulting 1-pixel wide lines correspond to the neurites in the original

grayscale image.

4.4 Peptides and proteins

The P2 peptide, corresponding to a 12-amino acid sequence localized in the second

immunoglobulin (Ig) module of the neural cell adhesion molecule (NCAM) and representing

a homophilic binding site (NCAM binding to NCAM), was synthesized as a tetrameric

dendrimer (P2d) composed of four monomers with the sequence GRILARGEINFK coupled

to a lysine backbone as previously described (Soroka et al., 2002).

The oligomeric form of the recombinant mouse S100A4 protein (Novitskaya et al., 2000)

was a generous gift from prof. Eugene Lukanidin (Danish Cancer Society, Copenhagen,

Denmark).

4.5 Software

Linear regression analysis for statistical evaluation was performed using the R software

package (R). Applications were written using the languages Perl (ActiveState; Perl) and

C. GCC (GNU) and MSVC (Microsoft) compilers were used for compilation of the C code.

Applications were run on the FreeBSD (FreeBSD), Windows 98/NT/2000 (Microsoft),

Linux (Linux), OS/2 (IBM) and Irix (SGI) operation systems.
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5 Results

In this chapter the experimental results obtained during the study are described. The

stereological setup, algorithm details, and comparison of results using the automated recog-

nition algorithm with results collected from human experts are given in Section 5.1. All

programs used in the study were implemented in the Perl language, using two software

toolkits created by the author, and are described in detail in Section 5.2. Also, a descrip-

tion of programs created during the study used in other research projects at the Protein

Laboratory are included.
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Figure 5.1. Typical microscope images of neurons
On the left: example of an image of neurons without neurites. On the right: example of
an image of neurons with developed neurites.

5.1 Automated quantification of neurite outgrowth

A new computational method for quantification of neurite lengths from microscope

images of cultures of primary neurons was developed. The method is based on a ridge

enhancement and analysis of distribution of pixel intensity in the image. The graphical

user interface and image processing toolkits, and the end-user applications based on these,

were developed so that it is necessary for the user to select two scale selection parameters,

the average neurite width and the minimum cell body area. These parameters are applied

for the processing of a series of images, recorded from experiments, acquired under the

same optical magnification, and using the same type of cell culture.

5.1.1 Object recognition

Neurons and neuronal processes (neurites) as they appear on typical microscope images,

are shown in Figure 5.1. The digital image processing of the images of cultures of primary

neurons begins with the application of a filtering algorithm. The algorithm enhances

Gaussian ridges and blobs, and simultaneously suppresses other features in image. The

ridges and the blobs are extracted from the filtered image, and then processed separately

further, in order to determine whether a particular detected object represents a neurite or

a cell body, respectively.

Spatial sizes of neurites and cell bodies, as they appear on images, directly depend on the

optical magnification used when the images are captured by a video-camera attached to a

microscope. This dependency leads to a differentiation from the Lindeberg’s scale selection

scheme, that is optimal when no a priori information about the image is available. Here,
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the spatial ridge detector operates on a single scale, which may either be set a priori, or

determined as the scale that yields a maximal specific response of the detector. Figure 5.2

shows an example of an image on different scales, and the results of the ridge detector

applied to them.

The result of the ridge detector is then binarized, so that the detected objects appear

as groups of pixels with distinct pixel value. Depending on the object area and shape,

the objects are further classified either as cell bodies, neurites, or artifacts; the last are

discarded at this stage. The objects representing cell bodies and neurites are further

mapped into skeletons and blobs, that can be used as estimators of neuritic lengths and

number of neurons, correspondingly. The medial axis transform operator implemented as a

morphological transform is a fast algorithm, (Ji et al., 1992) and it is applied to the images

to convert binary objects into 1-pixel wide representative skeletons.

The binary shapes, containing all the objects detected by the ridge filter, are trans-

formed into a representative set of circles. The centers of the circles, corresponding to the

largest blobs are classified as centers of cell bodies. Finally, in the reconstructed image,

the lengths of representative skeletons are assumed to be the total neurite length; the ar-

eas occupied by cell bodies are excluded from calculations at this stage. The number of

detected blob structures are assumed to be the number of neurons.

An example of application of the filtering algorithm on a typical recorded image is

shown in Figure 5.3A. The ridge structures corresponding to neurites are extracted from

the image (Figure 5.3B) and converted into the representative skeletons (Figure 5.3C). The

blob structures corresponding to cell bodies are extracted from the image (Figure 5.3D).

The reconstructed image in which the blob structures (cell bodies) and the skeletons of

neurites are superimposed is shown in Figure 5.3E.

5.1.2 Effect of the S100A4 protein on neurite outgrowth from

primary hippocampal neurons

To validate the automated object recognition procedure for estimation of neurite length,

it was compared to a stereological procedure in which neurite outgrowth was estimated

by manually marking all neuronal cell bodies and intersections of all neuronal processes

with the lines within the counting frame on each retrieved image, taken from each mi-

croscopic field via a CCD video-camera. First, as a model system, a primary culture of

hippocampal neurons was used. The neurite outgrowth response was induced by treat-

ment of cultures with the S100A4 protein. The S100A4 protein is an efficient neuritogenic
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A

B

C

D

Figure 5.2. Results of application of the ridge detection filter on different scales.
The left column contains scales 4,16, and 256 of the original (inverted) image. The right
column contains results of the ridge detection filter applied to the corresponding images
on the left.
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A

Blob extraction

Original
image Ridge filter

Skeletonization

Figure 5.3. Block diagram of the cell body and neurite detection algorithm (A) and illus-
tration of its application (B-E).
B: The original (inverted) image. C: Skeletonization D: Image after the extraction of blobs.
E: reconstructed image.
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factor which can induce differentiation of hippocampal neurons through the activation of

phospholipase C, protein kinase C, and the extracellular signal-regulated kinase (ERK)s 1

and 2. This extracellular function of the protein depends on its aggregation state, since

only the oligomeric form, but not the S100A4 dimer has the potential to induce neurite

outgrowth (Novitskaya et al., 2000). Cultures of hippocampal neurons were treated with

various concentrations of oligomeric S100A4 for 24 h, fixed and immunostained for GAP-

43, and recorded images were analyzed using the stereological and automated methods.

Oligomeric S100A4 strongly induces neurite outgrowth from hippocampal neurons in a

concentration range from 1.25 to 10 µM. The same dose-response profile was obtained us-

ing the automated procedure (Figure 5.4A) and the stereological method (Figure 5.4B).

However the stereological method gave higher absolute values of neurite lengths (in µm)

than the automated procedure. Based on the neurite outgrowth data from four independent

experiments, regression lines with 95% confidence limits were plotted to illustrate the cor-

relation between the two procedures for evaluation of neurite outgrowth. From Figure 5.4C

it appears that the values of neurite lengths per cell obtained employing the automated

approach correlated positively with those obtained using the stereological method (r =

0.82, df = 12, P < 0.001).

5.1.3 Effect of an inhibitor of the FGF receptor, SU5402, on neu-

rite outgrowth from CGN induced by an NCAM mimetic

peptide

It was also tested if the automated procedure can be applied for the estimation of neurite

outgrowth from other types of neurons. Cultures of cerebellar granule neurons (CGN) were

treated with a neuritogenic peptide, P2d. This small peptide is a fragment of the second

Ig module of NCAM, which by structural studies has been identified as a part of the

homophilic binding site for the first Ig module of NCAM (Soroka et al., 2002). Treatment

of hippocampal neurons, CGN and mesencephalic dopaminergic neurons with P2d has been

reported to induce a neuritogenic response and to promote cell survival (Soroka et al., 2002;

Pedersen et al., 2004). It is also known that NCAM-mediated neurite outgrowth depends

on the activation of the FGF-receptor signaling pathway (Kiselyov et al., 2003). Therefore

CGN were treated with the NCAM mimetic peptide P2d in a concentration of 0.32 µM and

with an inhibitor of FGF-receptor, SU5402, in various concentrations. From Figure 5.5 it

appears that SU5402 in a dose-dependent manner inhibited the neuritogenic response of

47



A

20
40
60
80

100
120
140
160
180
200

1.25 2.5 5 10

Control

S100A4

µ M

N
eu

rit
e 

le
ng

th
 p

er
 c

el
l, 

µ
m

B

20
40
60
80

100
120
140
160
180
200

1.25 2.5 5 10

Control

S100A4

µ M

N
eu

rit
e 

le
ng

th
 p

er
 c

el
l, 

µ
m

C

0 25 50 75 100 125 150 175

0

20

40

60

80

Neurite length per cell, µ m
Stereological method

N
eu

rit
e 

le
ng

th
 p

er
 c

el
l, 

µ
m

A
ut

om
at

ed
 m

et
ho

d

Figure 5.4. Effect of oligomeric S100A4 on neurite outgrowth from hippocampal neurons.
The effect is estimated by using the automated procedure (A) and the stereological
method (B).Correlation between neurite length determined by automated and stereolog-
ical methods (C). Hippocampal cells were grown for 24 h in the presence of increasing
concentrations of oligomeric S100A4. The oligomeric fraction of S100A4 was obtained by
size exclusion chromatography of the recombinant mouse S100A4 as previously described
(Novitskaya et al., 2000). Cultures were fixed and immunostained for GAP-43. For each
condition in each individual experiment, 40-45 different microscopic fields were recorded.
Results from four independent experiments made on separate days are in all cases expressed
as a mean ±S.E.M.

48



CGN to P2d stimulation. The same dose-response profile was observed with the automated

procedure (Figure 5.5A) and with the stereological method for evaluation of the neurite

length (Figure 5.5B). The stereological method gave slightly higher absolute values of

neurite lengths than the automated procedure. In Figure 5.5C it can be seen that the

values of neurite length per cell obtained employing the automated approach correlated

positively with those obtained using the stereological method (r = 0.909, df = 13, P <

0.001).

5.1.4 Effect of a peptide derived from fibroblast growth fac-

tor 10(FGF10), termed 10F10, on neurite outgrowth from

CGN

The automated procedure also was tested using series of images obtained by recording

experiments in which the effect of a peptide derived from FGF10, termed 10F10, on neurite

outgrowth from CGN was investigated. The 10F10 peptide, MYVALNGKGAPRRG, was

recently identified an agonist of the FGF receptor-1 (Li et al., manuscript in preparation).

From Figure 5.6 it appears that 10F10 strongly induced neurite outgrowth from CGN in

a dose-dependent manner. This response was dependent of the activation of the FGF

receptor, since the inhibitor of the receptor (SU5402) inhibited neurite outgrowth induced

by the 10F10 peptide. The same dose-response profile was obtained using the automated

procedure (Figure 5.6 A,C) and the stereological method (Figure 5.6 B,D).

5.1.5 Evaluation of automated estimation of neurite outgrowth

All data from the above-described experiments were combined and regression lines with

95% confidence limits were plotted to assess the correlation between the two procedures

for evaluation of neurite outgrowth (Figures 5.7). The estimates of neurite length by the

automated and stereological procedures were found to be linearly correlated with correla-

tion coefficients of 0.845 (df = 57, p < 0.0001). Thus, the developed automated method

appeared to be an efficient alternative to the semi-manual stereological procedure for the

determination of the neurite length.

To further validate the automatic procedures, data measurements of neuritic lengths

and the number of cell bodies (neurons) were separately analyzed. The correlation coeffi-

cient for neurite lengths and the number of neurons was found to be 0.976 (Figure 5.7B)

and 0.808 (Figure 5.7C).
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Figure 5.5. Effect of an NCAM mimetic peptide, P2d, on neurite outgrowth from CGN.
The effect is estimated by using the automated procedure (A) and the stereological method
(B). Correlation between neurite length determined by automated and stereological meth-
ods (C). CGN were grown for 24 h in the presence 0.32 µM P2d and increasing concentra-
tions of SU5402. Cultures were fixed and immunostained for GAP-43. For each condition
in each individual experiment, 40-45 different microscopic fields were recorded. Results
from four independent experiments made on separate days are in all cases expressed as a
mean ±S.E.M.
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Figure 5.6. Effect of a peptide derived from FGF10, 10F10, and a FGF receptor inhibitor,
SU5402, on neurite outgrowth from CGN.
The effect is estimated by using the automated procedure (A,C) and the stereological
method (B,D). The dose-response relationship of 10F10 is shown in panel A and B, and
the effect of the FGF receptor inhibitor SU5042 is shown in panel C and D. Cultures were
fixed and immunostained for GAP-43. For each condition in each individual experiment,
40-45 different microscopic fields were recorded. Results from four independent experiments
made on separate days are in all cases expressed as a mean ±S.E.M.
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Figure 5.7. Evaluation of automated estimation of neurite outgrowth.
All data presented in Figures 5.4, 5.5, and 5.6 were combined and regression lines with
95% confidence limits were plotted. The graphs reflect the measurements of neurite length
per cell (A), number of cells (B) and the total length of neurites (C), respectively.
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The differences are attributed to errors of both the algorithm and the human experts.

The algorithmic errors arise from a misinterpretation of cell-like bright areas and imprecise

neurite tracing on the skeletonization stage. The human experts tend to interpret filopodia,

manifested as minor neurite branches, differently. Also, images where cells are entangled

with each other cause human experts to disregard weaker features.

The manual measurements were performed on 2106 images from 51 experiments of 20

to 100 images per experiment. The number of analyzed images per experiment was chosen

by an expert human analyzer. The number of analyzed cell bodies per experiment was

approximately 200.

The automated quantification algorithm was implemented on Perl, whereas individual

image processing operators were implemented in C for efficiency. The automated analysis

of a typical 768 x 576 image takes less than 3 seconds on a 2.4GHz Pentium IV machine

running the FreeBSD operation system.
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5.2 A graphical user-interface toolkit and an image

processing toolkit

5.2.1 Applications

A number of applications have been developed in Perl for biological research. The

applications perform a range of recording, processing, and statistical tasks needed in the

laboratory and have been tested on several computers running Windows 98/NT/2000,

Linux, FreeBSD, OS/2, and Irix.

The set of programs described below are targeted at different aspects of quantification

of recorded images. The programs are designed to perform both manual and automatic

extraction of data from the images, and allow the user to modify, load, and save the

accompanying data in files. The accompanying data is displayed as superimposed graphics

over a selected image. The data format is plain text or XML, and is arranged to be easy

readable by both man and machine.

All of the applications share their interface features and are organized as a image

displaying panel with menu, toolbar and status panel. The user can adjust various aspects

of image and data display in a standard setup dialog.

5.2.1.1 PrLenS: a program for manual and automatic stereological length es-

timation

PrLenS is a data sampling application capable of both manual and automated stere-

ological estimation of the length of line-like features from recorded images of cells. The

application assists the user in quantifying morphological features of a cell culture by em-

ploying a stereological method of curve length estimation described in Section 2.2.3.2.

PrLenS’s main working area is presented by a frame superimposed on the image, where

the user marks intersections of curves of interest within the frame by a computer mouse

in the manual mode. As shown in Figure 5.8, the frame consists of parallel equidistant

lines in order to obtain uniform sampling of the shape data, and objects are considered

according to conventional stereological principles.

The user can work with an arbitrary number of mark sets in order to mark or count ob-

jects of interest. Two mark sets are specifically used for selecting objects and features, and

used to calculate total normalized curve lengths. PrLenS uses a set of parallel, equidistant
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Figure 5.8. Manual and automated sampling of lengths of neurites.
(A) Screenshot of the application, running under MS Windows in manual mode. Centers
of cells and crossings of neurites are marked manually by the user. (B) Screenshot of the
same application, running under Unix/X11 in automatic mode. The program automatically
extracts and outlines centers of the cells and neurites in different colors.

lines superimposed on a curve, and estimates the length of a randomly oriented curve by

L̂ =
1

2
πTN (5.1)

where N is the number of intersections between the lines and curve, L̂ is the boundary of

the curve, and T is the distance between two parallel lines.

The algorithm of automatic quantification of neurite outgrowth described in

Section 5.1.1 is implemented in PrLenS. The user can set up detection parameters and

launch bulk quantification of image series inside the program. The PrLenS application

has been used for estimation of neuritic lengths in various research projects

(Kolkova et al., 2000a; Kolkova et al., 2000b; Ditlevsen et al., 2003; Køhler et al., 2003;

Soroka et al., 2003; Neiiendam et al., 2004; Pedersen et al., 2004; Pedersen et al., 2004;

Korshunova et al.).

5.2.1.2 MorphometryI: a program for manual and automatic measuring of cell

shape

MorphometryI is a data sampling application capable of both manual and automatic

extraction of morphological parameters from recorded images of cells (see Figure 5.9).
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The parameters are calculated from contours of objects of interest, marked either by the

human operator or produced by an image processing algorithm. The user can outline

the object contours by means of a computer mouse, or set up application segmentation

parameters so that the program performs automatic outlining of features. The program

extracts morphological parameters from closed contours and samples as a sequence of n

points with corresponding coordinate pairs

P0 = (x0, y0), P1 = (x1, y1) . . . Pn−1 = (xn−1, yn−1) (5.2)

on a cyclic domain wherePn = P0. The following parameters are reported by the applica-

tion:

• Object area

A = |1
2

n−1∑
i=0

xiyi+1 − xi+1yi| (5.3)

• Object perimeter

P =
n−1∑
i=0

√
(xi − xi+1)2 + (yi − yi+1)2 (5.4)

• Object breadth

B = min{max{xicosθ− yisinθ}−min{xicosθ− yisinθ}|i ∈ 0..n− 1, θ ∈ 0..π} (5.5)

• Object length

L = max{max{xicosθ− yisinθ}−min{xicosθ− yisinθ}|i ∈ 0..n− 1, θ ∈ 0..π} (5.6)

• Object width

W =
4A

πL
(5.7)

• Object form factor

F =
4πA

P 2
(5.8)

Convex hull area Ac, convex hull perimeter Pc, convex hull length Lc, and convex hull form

factor Fc are calculated by the same equations, but the contour points outline the object

56



Figure 5.9. The MorphometryI application.
Main image display and automated contour recognition window. The contours outline cells
and representative areas of background.

convex hull. These parameters are used to calculate the spreading index

SI =
πL2

c

4Ac
(5.9)

and bipolarity index

BI =
L

W
(5.10)

The number and area of domains (process index and process domain area, respectively)

created by subtracting the object area from the convex hull area are calculated. The

MorphometryI program has been used in various cell motility and morphology studies

(Tkach et al., 2003; Walmod et al., 2004).

5.2.1.3 ManCen: a cell motility tracking program

ManCen is a motility tracking application and is able to assist the user in tracking

objects of interest through series of images ( see Figure 5.10). The application was used for

a motility evaluation study of fibroblastoid and adenocarcinoma cells by analyzing param-

eters derived from sampled data. ManCen keeps track of each cell through the series as a

sequence of coordinates. The following parameters are extracted (Walmod et al., 2000):
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• The mean squared cell displacement after a given time (ti)

〈d2(ti)〉 =
1

N(k − i+ 1)

N∑
m−1

k∑
s−1

√
(xm(ts)− xm(ts−1))2 + (ym(ts)− ym(ts−1))2

(5.11)

where i = 0, 1, 2..k is the observation number, k is the total number of observations

minus one, ti is the time interval between the initial (t0) and the i-th observations,

xm(ti) and ym(ti) are coordinates of cell m at time ti, and N is the total number of

cells.

• The mean cell speed, ratio of mean cell displacement 〈dτ 〉to the time interval τ

〈Sτ 〉 =
〈dτ 〉
τ

=
1

Nkτ

N∑
m−1

k∑
s−1

√
(xm(ts)− xm(ts−1))2 + (ym(ts)− ym(ts−1))2 (5.12)

• The mean-cell-path length, for a sample of cell population at a given time

〈L〉 =
1

N

N∑
m−1

k∑
s−1

√
(xm(ts)− xm(ts−1))2 + (ym(ts)− ym(ts−1))2 (5.13)

The locomotive index

LI =
〈d〉
〈L〉 (5.14)

The framework for evaluation of individual-cell motility (Walmod et al., 2000) is based on

results acquired with ManCen. Also, the program has been used for cell motility research

(Walmod et al., 2004).

5.2.1.4 PrAverB: Average Brightness Estimation

PrAverB is an application for manual assessment of average brightness of rectangular

areas in an image. With the application, the user can overlay rotatable and scalable

parallelepiped frames over the image and select a binarization threshold over each sub-

image, thus masking the area of interest. PrAverB reports pixel area and average brightness

of the masked sub-image. The application is employed for quantification of scanned images

of gel plates used in blot transfer procedures.
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Figure 5.10. The ManCen application.
Manual markings indicate positions of cell centroids in a time series of images.
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5.2.2 Prima: a Perl toolkit for graphic user interface

The applications described above were built using the Prima library. Prima is a

platform-independent GUI toolkit implemented in C and Perl with an object-oriented

interface (Karasik, 2004), running on Unix/X11, Win32, and OS/2 platforms. It provides

a Perl implementation of an extensible set of interface elements, standard dialogs, and a

Visual Builder program. Having been designed originally for image processing needs, the

toolkit also contains basic image processing capabilities.

Prima supports a rich set of operations and transformations applicable to two dimen-

sional arrays of pixels (images) including conversion between the image formats, image

scaling, and raster combination. In addition to 1, 4, 8, and 24 bits per pixel formats are

supported together with byte, short, long, float, double, and complex pixel types. When

an image conversion process involves the down-sampling of pixel data, one of four error

distribution algorithms can be selected either automatically or specified by the program-

mer. Prima can load and save images using many file formats. The exact list the Prima

core supports is defined at time of compilation; also, dynamic linking of image file format

drivers is supported.

The main goal of Prima is to provide basic windowing and graphics services in a frame-

work of Perl classes. The core classes are implemented in C, and wrapper classes in Perl.

Since Prima was planned to run on multiple platforms, the C code is divided into a system-

independent and a system-dependent part. All core classes are implemented in a platform-

independent fashion, and their hierarchy tree is displayed in Figure 5.11. The standard

distribution of Prima includes many Perl classes, which implement a set of interface ele-

ments (widgets) expected to be found in any windowing toolkit: buttons, check boxes and

radio buttons, input fields, list boxes etc. The complete list of the currently implemented

widgets is shown in Figure 5.12.

Prima features a set of classes, whose instances represent graphic interface objects -

buttons, scrollbars, and the like. For their on-screen appearance management, the toolkit

employs a widespread object-oriented technique, where each interface element draws its

visual representation. Contrary to Perl-Tk, which provides rendering of on-screen pixels

by a framework of movable and scalable graphic objects (line, circle, etc.), Prima does not

rely on concept of graphic objects for visualization. Instead, each interface object controls

its appearance by issuing explicit calls to draw graphic primitives inside the special onPaint

callback routines. Although Perl-Tk allows easier management of the on-screen objects, its

approach is poorly scalable, when custom clipping regions, screen scrolling, or raster logical
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Figure 5.11. The Prima core classes hierarchy
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Figure 5.12. The Prima non-core classes hierarchy
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Figure 5.13. A screenshot of Prima Visual Builder

operations are involved, and requires additional C coding in order to access the internal

parts of graphic objects’ machinery. Furthermore, inability of Perl-Tk to provide direct

drawing operation requires a larger body of the toolkit knowledge from the programmer as

well as limiting one to C coding. In contrast, the Prima toolkit was implemented so that

additional C programming is possible but unnecessary, and the amount of information not

available from Perl is kept to a minimum.

A list of unique features of Prima includes pure-Perl implemented interface elements,

an image conversion subsystem, and a visual builder (see Figure 5.13). The Perl imple-

mentation of sophisticated interface elements, like a HTML browser, is not prohibitively

expensive, given the speed of modern day computers. Such an implementation is (ar-

guably) easier to develop and support in Perl than in C or C++, and in particular, a Perl

implementation saves the expenses of debugging eventual memory corruption and leaks,

intrinsic to the low-level language implementations.
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5.2.3 IPA: a Perl toolkit for image processing

IPA is an image processing toolkit based on Prima functionality, and it provides a set

of common two-dimensional operators. It complements the Prima toolkit with image pro-

cessing functions, and it is designed to be portable and platform-independent. IPA features

a set of basic processing operators widely described in the literature (Levine et al., 1985;

Pratt et al., 1991; Russ, 1995; Sonka et al., 1998) and grouped in modules by the type of

algorithms involved. In terms of implementation, most of the basic operators are divided in

categories “point”, “local”, “global”, after the area span that affects each particular pixel in

the image output. The respective operators are collected under corresponding namespaces,

and additionally mathematical morphology operators are grouped under the namespace

Morphology.

Similarly to many numerical packages, IPA provide a minimalistic interactive shell,

iterm, which is a combination of a command line with an image viewer window. Its us-

age primarily concerns interactive exploration of image processing operators, although the

shell is capable of parsing and executing the full spectrum of Perl language constructions.

IPA can be linked together with the PDL using a connector package PDL-PrimaImage

(Karasik, 2003).

All IPA algorithms were implemented in C in order to gain efficiency. The input and

output of 2D pixel arrays and allocation routines are delegated to the Prima::Image class

implemented in the Prima toolkit. The class provides storage to pixel data and image

attributes: Array dimensions, pixel bit depth, number of channels, pixel memory layout,

and color index array (palette) for eventual image visualization. IPA internally employs

Prima::Image functions that provide image re-sampling and data conversion between var-

ious integer and floating-point pixel formats.

The IPA functionality is summarized below, including namespaces, implementation,

and details of image processing algorithms. Functions registered in the namespaces

IPA::Point, IPA::Local, and IPA::Morphology are supplied with formulations of

corresponding algorithms or implementation details.

5.2.3.1 IPA::Point

The module contains functions that perform single point transformations and simple

image arithmetics. Single-point processing techniques determine pixel value in the output

image from the value of the corresponding pixel in the input image. The process can be
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described with the mapping function o = M(i) where o and i are the pixel values in the

input and output images O and I, respectively. The following arithmetics is implemented:

• Algebraic summations and max function of N images

o =
N∑
n=1

in (5.15)

o =
1

N

N∑
n=1

in (5.16)

o =
N∑
n=1

|in| (5.17)

o =

√√√√
N∑
n=1

i2n (5.18)

o =
N

max
n=1

in (5.19)

o =
N

max
n=1
|in| (5.20)

• Algebraic subtractions of two images

o = i1 − i2 (5.21)

• Global thresholding

o =

{
0 if i < imin ∪ i > imax

1 otherwise
(5.22)

• Gamma function

o = i1/γ (5.23)

• Gate function of test value t and three inputs

o =

{
i1 if i0 = t

i2 otherwise
(5.24)
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A7 I(x, y) A3
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Figure 5.14. Numbering convention for 3x3 pixel addressing

• Non-adaptive histogram equalization

o = i

∑i
n=1N(n)∑max
n=1 N(n)

(5.25)

where N() is number of pixels at intensity level i.

• Generic mapping table (transfer function) f

o = M(i) (5.26)

5.2.3.2 IPA::Local

Functions registered in the IPA::Local namespace operate in the local vicinity of a

pixel, and produce an image where every pixel is dependent on the values of the corre-

sponding source pixel and its neighbours. The process can be formulated as an impulse

response function,

O =

{
O{I(x, y)} if 1 < x, y < L

0 otherwise
(5.27)

where O is a spatial linear operator, L × L is area of neighbourhood for output pixel, I

and O input and output images. Many of these are implemented by a convolutions with

two-dimensional kernels. In particular, for 3x3 kernels the pixel numbering convention

depicted in Figure 5.14 is used.

The following operators are provided:

• Crisping effect

O{·} = I(x, y)−
7∑
i=0

A(i) (5.28)

• Sobel edge detector

O{·} =
√
Gx(x, y)2 +Gy(x, y)2 (5.29)
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where horizontal and vertical derivatives are computed as

Gx =
1

4
((A2 + 2A3 + A4)− (A0 + 2A7 + A6)) (5.30)

Gy =
1

4
((A0 + 2A1 + A2)− (A6 + 2A5 + A4)) (5.31)

• Canny-Deriche edge detector (Deriche, 1987)

• Convolution with custom kernel K

O = I ∗K (5.32)

• Median filter (Huang et al., 1979)

• Segmentation into S non-overlapping homogeneous regions

S⋃
i

Ri = I (5.33)

|H(Ri)−H(Rj)| > t for adjacent regions Ri (5.34)

where H is homogeneity criterion and t threshold. Here, the algorithm is designed

for various H, although only average region intensity criterion

H =
1

N

N∑
i

R (5.35)

is currently implemented.

5.2.3.3 IPA::Morphology

The IPA::Morphology namespace contains image processing operators based on con-

cepts of mathematical morphology, which in turns operates with point sets, their connec-

tivity and shape. The result of a morphological operator can be described as

O = Ψ(I, B) (5.36)

where Ψ is geometrical transformation or mapping, given by relation of the input image

I with a small structuring element B in Euclidean space Z2. Here structuring elements
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are limited to 3x3 kernels and implemented using min and max operations rather than

boolean logic, which makes the functions immediately applicable to the grayscale images

as well as to the binary. The following operators are implemented:

• Dilation

I ⊕B = {p : p = i+ b, i ∈ I and b ∈ B} (5.37)

• Erosion

I 	B = {p : p+ b ∈ I for every b ∈ B} (5.38)

• Opening

I ◦B = (I 	B)⊕B (5.39)

• Closing

I •B = (I ⊕B)	B (5.40)

• Gradient

grad(I) = (I ⊕B)− (I 	B) (5.41)

• Reconstruction of two binary images I and J

ρI(J) = lim
n→∞

δ
(n)
I (J) (5.42)

where geodesic (here, limited to I) dilation operator δ of size n of a set J is given as

δ
(n)
I (J) = {i ∈ I, ∃j ∈ J, dI(i, j) ≤ n} (5.43)

and dI(i, j) is the shortest path between points i and j inside I (Vincent, 1993).

• Sequential thinning

I �B{(i)} = (((I �B(1))�B(2))...�B(n)) (5.44)

where

I �B = I\(I ⊗B) (5.45)

• Generic hit-and-miss transform

I ⊗B = {p : B1 ⊂ I and B2 ⊂ Ic} (5.46)
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where B1and B2 two structure elements, matching correspondingly I and its comple-

ment Ic.

• Watershed segmentation (implemented after (Vincent et al., 1991))

Where applicable, the operators are implemented for 4- and 8- pixel neighbourhood (as in

Table 5.14, considering pixel sets C4 = A(1,3,5,7) and C8 = A(0,1,2,3,4,5,6,7), respectively).

In addition to the operators above, set connectivity filtering operators are provided.

The boolean filtering criteria

o =

{
1 if f(ℵp{p : p = i ∩ b, i ∈ I, b ∈ C(4 or 8)}) = TRUE

0 otherwise
(5.47)

where ℵ is set size, ranging from 0 to 4 or 8, depending on C, are implemented as sequences

of hit-and-miss blocks to be applied to each pixel of I. Each set contains 29 boolean

elements, representing pre-calculated responses for all combinations of a 3x3 set. The

following criteria are defined:

• Isolated point filter

f = ℵp > 0 (5.48)

• Pruning

f = ℵp > 1 (5.49)

• Node break

f = ℵp < 3 (5.50)

5.2.3.4 Other IPA modules

The IPA::Global module contains methods that produce images, where the value of

each output pixel depends on all input image pixel values, O = F (I). The namespace

contains functions implementing Fourier transform and two-dimensional band filter func-

tions, plus a set of topology-based functions for binary images: Area filtering, contour

identification, contour fill.

The IPA::Geometry module provides geometrical transformation on images: transla-

tion, rotation, mirroring. Scaling is not provided as it is supported by the underlying core

functionality of the Prima toolkit.
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The IPA::Misc module contains a set of miscellaneous, non-related functions such as

channel splitting and combination routines, and intensity histogram calculation.
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6 Discussion

Measurements of neurite length by manual tracking of neurites on retrieved images of

video-recorded microscopic fields from cell cultures are the most time-consuming step in

analysis of neurite outgrowth. Also, user-related bias is common to manual analysis of

images with regard to estimation of neurite length. At Protein Laboratory a stereological

method for quantification of neurite length based on stereological principles has been de-

veloped, which both simplifies the analysis of neurite outgrowth and dramatically reduces

the time of image processing (Rønn et al., 2000). However, the user-introduced bias is still

present in the stereological procedure, since an operator needs to mark manually cell bodies

and intersections of neurites with the grid built in an unbiased counting frame. In order

to avoid the manual component entirely in the determination of neurite outgrowth, an

algorithm allowing automatic processing of images of cultures of dissociated neurons was

developed, under the condition that neurons are stained with a fluorescent dye (in our case

it was GAP-43 immunostaining). The algorithm is based on ridge filtering, skeletonization,

and the blob extraction, and automatically yields all information for determination of the

number of neurons and the total neurite length. The algorithm was tested using cultures

of hippocampal and cerebellar granule neurons treated with neuritogenic compounds by

comparing automated vs. stereological determination of neurite outgrowth. In total, more

than 2000 images were subjected to the analysis, and a statistically significant linear corre-

lation between the two methods was found, with correlation coefficients ranging from 0.85

to 0.97 in different experiments.

Several of the state of the art algorithms targeted at detection of neurites (and, in gen-

eral cases, any visible features manifested as ridges or edges) are also based on multi-scale

feature detection (Dima et al., 2002; Meijering et al., 2004). To attain a higher degrees

of accuracy, one may employ sophisticated detection of additional features inherent to

the images (branching points) (Dima et al., 2002) , or resort to hints provided by a hu-

70



man expert (Meijering et al., 2004). Another recently invented method does not employ

the multi-scale approach, but rather depends on the inherent radial direction of cultured

neurites (Weaver et al., 2003). An algorithm suitable for automated estimation of the

number of attached cells and the neurite length was developed and tested on cultures of

dissociated retinal ganglion cells, which were double stained for NCAM (immunofluores-

cence staining of cells with neurites) and DNA (staining of cell bodies with bisbenzimide)

(Treubert et al., 1998). The novelty of our approach was the development of an algorithm

that can be used for quantification of neurite outgrowth by digital image analysis of cul-

tures of dissociated neurons stained with only one single fluorescent marker. Employing

this algorithm it is shown that the exogenous S100A4 protein in its oligomerized form is a

strong inducer of neurite outgrowth from hippocampal neurons. Furthermore, it is demon-

strated that an induction of the neuritogenic response in cerebellar neurons by an NCAM

mimetic peptide, P2, involves obligatory activation of the FGF receptor.

Image analysis-based quantitative studies that do not involve a human operator are

most often unable to reproduce the results of a human expert exactly, although, if com-

pared, the correlation between the results is relatively high. The stereological methods on

the contrary do not introduce large bias, but are significantly less productive. The pre-

sented method was found to yield results comparable to those obtained by a human expert

with a high degree of accuracy, although depending on the type of input the results possess

certain deviations. The error tendencies of the neurite detector algorithm are to appear

mostly in cell cultures where neurites are absent or relatively short. This is attributed to a

high sensitivity of the ridge detector to sharp and irregular boundaries of specific neurites.

A possible method to mitigate the effect is to apply weighing to the detector results, where

shorter neurites would give lesser impact on the total result. Without the experimental

back up though, this approach should be considered as speculative. In contrast, the re-

sults of the automated analysis from cell cultures with longer, developed neurons strongly

correlate with the human results.

While the method sometimes does not detect neurites that are weakly manifested vi-

sually, but recognized by the human eye, or gives false positives in the circumstances

described above, the main source of error is not under- or over-detection of neurites, but

rather under-detection of cell bodies. The latter occurs mostly when cell bodies overlap,

or form a tight conglomerate, but nevertheless are counted as single cell, distorting the

normalized (lengths to number of cells) ratio. Although these conglomerates are not repre-

sentative within the cell model, and strictly speaking, should be omitted by human experts,

71



they rarely are, so the detection program in practice was forced to deal with these. On

the other hand, automatic exclusion of conglomerates from images, as well as a detection

of the proper number of cell bodies within conglomerates, both address the same problem,

the determination of whether a particular blob consists of one, or more than one, cell body.

This problem is acknowledged, but is unsolved within this study. Still, in case further

research is to be done, a promising way to tackle the problem is to model and reconstruct

2D structures of cell bodies, accounting for variability of morphology and shape within

individual cell models.

The proposed method was tested within a set of constraint conditions, and in particular,

neuronal models, experimental conditions, and image acquisition setup and conditions

were fixed. This does not mean that the detector algorithm is crafted exclusively for

input acquired under these conditions only, since the underlying ridge detection principle

is valid on theoretically any image displaying visually discernible neurites, given these are

not heavily intertwined. Nevertheless, since the detection experiments were not carried

out under other conditions, the presented method may not produce valid results if applied

directly to significantly different input, and may therefore require additional pre-processing

in order to be adapted to the input.

The comparison between results of manual and automated analysis showed a high degree

of correlation. Comparison to the stereological methods, the presented method is faster and

requires no active human interaction. The presented method is an efficient and accurate

way to estimate lengths of neurons grown in vitro, and it can be used for fast estimation

of dose-response effect of various substances on neurite outgrowth.

Although the results of the proposed method on an individual image may not match

with the results provided by a human expert, or even be erroneous in rare cases, the gross

outcome, namely the effect of a substance on the neuronal culture, closely corresponds

to the gross results of the expert. Moreover, this outcome was the actual aim of the

whole study, primarily because the accuracy of the method is less relevant in the scope

of the biological research, targeted at the search of compounds with profound outgrowth

acceleration functions, rather than the precise measurement of the effect or reconstruction

of neurons. This aspect largely contributes to the principal difference between the state of

the art methods and the proposed method.

The software implementation of the detector algorithm within a graphic-user interface

program was accomplished in such a fashion so that the resulting set of programs can

be run on a wide range of platforms. Also, it was attempted to design the development
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process so that parts of the software responsible for the interface and the detection were

built using optimal tools for each part, namely the scripting language Perl for the former

and C for the latter. The criterion for the implementation of image processing algorithms

was defined to be speed of execution, whereas the criterion for the interface and program

logic was defined to be speed of development and separation of program logic from the

underlying algorithms. As a part of the research, two Perl-C toolkits, Prima and IPA were

developed, to provide a common basis for implementation of the user interface and the

image processing programs. The set of programs based on Prima and IPA for estimation

of neurite lengths, and extraction of cell morphology and motility was implemented within

the research. Currently, the two toolkits have grown out of this research into a separate,

non-academic domain, and are freely available on the internet.

In conclusion, the present study demonstrates the usefulness of the developed algo-

rithm for automated determination of neurite outgrowth in primary cultures of dissociated

neurons stained with a fluorescent dye.
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7 Conclusions

1. The automatic quantification of neuritic lengths from microscopy images based on

ridge detection is a fast and accurate method for estimation of neurite outgrowth

on neuronal differentiation models. Also, it is a promising tool for a larger area

of research where quantification of neuritic lengths requires a significant amount of

human resources.

2. The platform-independent implementation of automatic quantification program,

along with a set of related programs and software development toolkits, is provided.
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A Results of automatic detection

Below are examples of the results of automatic detection of neurites and cell bodies,

performed by the PrLenS program. Images on the left (inverted) are the original microscopy

images recorded by Z.Li, a sub-set of images recorded from experiments of cells treated by

the of 10F10-d peptide and the SU5402 inhibitor. Images on the right contain composite

responses of the detector program as regards cell centroids and neurites. The magnification

coefficient is constant in all images.
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B Experimental data

The tables contain averaged data for each experiment, extracted by a human expert and

the PrLenS program. The experimental data are marked ’control’, where no substances

were added, and otherwise with concentration of substances. Each value is an average

from 20 to 50 images recorded in a single experiment. The number of images analyzed

by a human expert is the same as the number of images analyzed by the program in each

experiment.

Legend:

• CH - number of cell bodies, as calculated by a human expert

• PH - length of neurites in µm, as calculated by a human expert using the stereological

method

• RH - averaged length of neurites, PH/CH.

• CM - number of cell bodies, as extracted by the detector program.

• PM - length of neurites in µm, as extracted by the detector program

• RM - averaged length of neurites, PM/CM.

The plots of the data in rows RH and RM are displayed in Figures 5.4, 5.5 and 5.6.

The columns reflect the first, second, and third experiment, respectively, under the same

experimental setup, where available. The other columns contain average values of all

experiments under the same setup, and standard error of means, when there is data from

more than one experiment.

86



C3d-amide

Control Exp.#1 Exp.#2 Exp.#3 Average SEM

CH 3.333 3.333 0.000

PH 33.757 33.757 0.000

RH 10.127 10.127 0.000

CM 4.033 4.033 0.000

PM 66.407 66.407 0.000

RM 16.465 16.465 0.000

0.2µg/ml

CH 2.500 2.500 0.000

PH 37.460 37.460 0.000

RH 14.984 14.984 0.000

CM 3.513 3.513 0.000

PM 70.380 70.380 0.000

RM 20.035 20.035 0.000

1µg/ml

CH 2.667 1.800 2.233 0.433

PH 61.537 41.836 51.686 9.851

RH 23.076 23.242 23.159 0.083

CM 3.493 2.120 2.806 0.686

PM 56.225 35.915 46.070 10.155

RM 16.095 16.941 16.518 0.423

5µg/ml

CH 3.333 2.020 2.676 0.656

PH 82.455 68.084 75.269 7.185

RH 24.737 33.701 29.219 4.482

CM 4.983 2.677 3.830 1.153

PM 76.368 55.730 66.049 10.319

RM 15.325 20.820 18.072 2.748

20µg/ml

CH 1.738 1.738 0.000

PH 2.490 2.490 0.000

RH 1.433 1.433 0.000

CM 2.675 2.675 0.000

PM 13.143 13.143 0.000

RM 4.913 4.913 0.000
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10F10-d and SU5402

Control Exp.#1 Exp.#2 Exp.#3 Average SEM

CH 8.696 3.509 3.383 5.196 1.750

PH 27.429 69.902 54.786 50.706 12.429

RH 3.154 19.922 16.193 13.090 5.083

CM 6.435 3.158 2.917 4.170 1.135

PM 32.722 66.989 33.388 44.366 11.313

RM 5.085 21.213 11.447 12.582 4.690

5µg/ml 10F10-d

CH 12.750 4.721 8.696 8.722 2.318

PH 1104.015 370.643 703.047 725.902 212.014

RH 86.589 78.511 80.850 81.983 2.400

CM 6.562 3.953 5.217 5.244 0.753

PM 714.912 281.071 432.608 476.197 127.121

RM 108.939 71.094 82.916 87.650 11.178

5µg/ml 10F10-d, 25µM SU5402

CH 8.417 4.930 11.111 8.153 1.789

PH 383.223 211.576 533.100 375.966 92.887

RH 45.531 42.914 47.979 45.475 1.462

CM 6.292 4.256 7.722 6.090 1.006

PM 276.465 159.583 313.896 249.981 46.473

RM 43.941 37.498 40.648 40.696 1.860

5µg/ml 10F10-d, 50µM SU5402

CH 11.200 4.762 10.100 8.687 1.988

PH 522.955 145.463 531.255 399.891 127.237

RH 46.692 30.547 52.600 43.280 6.591

CM 8.450 4.643 6.300 6.464 1.102

PM 395.951 106.857 400.932 301.247 97.205

RM 46.858 23.015 63.640 44.504 11.786

5µg/ml 10F10-d, 100µM SU5402

CH 5.205 3.407 10.895 6.502 2.257

PH 168.571 56.277 389.704 204.851 97.947

RH 32.386 16.519 35.770 28.225 5.934

CM 5.205 3.542 8.316 5.688 1.399

PM 107.131 51.869 249.608 136.203 58.904

RM 20.582 14.642 30.016 21.747 4.476
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10F10-d

Control Exp.#1 Exp.#2 Exp.#3 Average SEM

CH 2.899 2.899 0.000

PH 12.030 12.030 0.000

RH 4.150 4.150 0.000

CM 2.928 2.928 0.000

PM 13.314 13.314 0.000

RM 4.548 4.548 0.000

0.2µg/ml

CH 2.299 3.509 2.904 0.605

PH 16.029 5.243 10.636 5.393

RH 6.973 1.494 4.234 2.739

CM 2.989 3.351 3.170 0.181

PM 20.800 9.417 15.108 5.692

RM 6.960 2.810 4.885 2.075

1µg/ml

CH 2.985 3.571 3.278 0.293

PH 81.274 99.610 90.442 9.168

RH 27.227 27.891 27.559 0.332

CM 3.791 3.714 3.752 0.038

PM 83.752 60.873 72.313 11.439

RM 22.092 16.389 19.240 2.851

5 µg/ml

CH 6.452 4.762 5.607 0.845

PH 427.361 298.041 362.701 64.660

RH 66.241 62.589 64.415 1.826

CM 6.548 4.881 5.715 0.833

PM 369.344 200.802 285.073 84.271

RM 56.402 41.140 48.771 7.631

20µg/ml

CH 4.651 4.651 0.000

PH 287.249 287.249 0.000

RH 61.758 61.758 0.000

CM 4.209 4.209 0.000

PM 222.901 222.901 0.000

RM 52.954 52.954 0.000
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P2d and SU5402

Control Exp.#1 Exp.#2 Exp.#3 Average SEM

CH 4.762 2.857 5.395 4.338 0.763

PH 52.177 15.284 60.290 42.584 13.849

RH 10.957 5.349 11.176 9.161 1.907

CM 4.381 2.825 4.447 3.884 0.530

PM 53.758 18.534 52.281 41.524 11.503

RM 12.271 6.560 11.755 10.195 1.824

0.32µg/ml P2d

CH 5.882 5.000 6.250 5.711 0.371

PH 345.707 147.755 206.484 233.315 58.697

RH 58.770 29.551 33.037 40.453 9.214

CM 5.059 3.975 4.656 4.563 0.316

PM 259.606 96.152 129.355 161.704 49.880

RM 51.317 24.189 27.781 34.429 8.507

0.32µg/ml P2d, 25µM SU5402

CH 7.407 3.206 8.200 6.271 1.550

PH 287.763 61.136 207.190 185.363 66.326

RH 38.848 19.067 25.267 27.727 5.841

CM 8.296 2.857 6.200 5.784 1.584

PM 218.692 38.562 183.283 146.846 55.098

RM 26.360 13.497 29.562 23.140 4.909

0.32µg/ml P2d, 50µM SU5402

CH 7.692 3.865 6.242 5.933 1.116

PH 300.108 44.697 143.882 162.896 74.341

RH 39.014 11.563 23.049 24.542 7.960

CM 6.769 3.423 4.939 5.044 0.967

PM 209.012 16.602 112.691 112.768 55.544

RM 30.877 4.850 22.815 19.514 7.692

0.32µg/ml P2d, 100µM SU5402

CH 6.281 2.254 9.318 5.951 2.046

PH 116.212 6.442 175.073 99.242 49.413

RH 18.501 2.859 18.788 13.383 5.262

CM 6.125 2.343 6.773 5.080 1.381

PM 73.324 10.572 131.305 71.734 34.862

RM 11.971 4.512 19.387 11.957 4.294
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S100 A4

Control Exp.#1 Exp.#2 Exp.#3 Average SEM

CH 5.306 4.515 4.910 0.396

PH 47.653 18.446 33.050 14.603

RH 8.982 4.085 6.534 2.448

CM 5.417 4.455 4.936 0.481

PM 44.732 50.308 47.520 2.788

RM 8.258 11.294 9.776 1.518

1.25µM

CH 5.049 5.907 5.692 5.549 0.258

PH 562.839 696.243 537.783 598.955 49.179

RH 111.480 117.868 94.475 107.941 6.981

CM 5.951 5.814 5.872 5.879 0.040

PM 483.745 461.245 282.513 409.168 63.660

RM 81.285 79.334 48.114 69.578 10.747

2.5µM

CH 5.805 4.310 5.390 5.168 0.446

PH 948.863 656.164 834.136 813.054 85.150

RH 163.460 152.259 154.749 156.823 3.396

CM 6.707 5.095 6.000 5.934 0.467

PM 703.077 398.705 404.110 501.964 100.569

RM 104.822 78.251 67.352 83.475 11.128

5µM

CH 5.286 4.907 5.024 5.072 0.112

PH 681.198 881.565 668.118 743.627 69.072

RH 128.875 179.655 132.975 147.168 16.286

CM 5.762 6.093 5.659 5.838 0.131

PM 552.205 573.854 437.719 521.259 42.235

RM 95.837 94.182 77.355 89.125 5.904

10µM

CH 5.214 4.073 5.000 4.762 0.350

PH 624.541 376.576 475.107 492.075 72.082

RH 119.775 92.453 95.021 102.416 8.711

CM 5.119 1.829 4.976 3.975 1.074

PM 460.896 116.347 272.106 283.116 99.615

RM 90.035 63.603 54.688 69.442 10.613
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E. Cell-cycle-dependent regulation of cell motility and determination of the role of

Rac1. Exp. Cell Res. 2004, 295:407-420

109



Walsh N. Learning Perl/Tk. O’Reilly, 1999

Watson M. Portable gui development with C++. McGraw-Hill Osborne Media, 1993

Weaver CM, Pinezich JD, Brent Lindquist W, Vazquez ME. An algorithm for neurite

outgrowth reconstruction. J. Neurosci. Methods. 124 2003:197-205

West MJ. New stereological methods for counting neurons. Neurobiol. Aging 1993,

14:275-285

West MJ. Stereological methods for estimating the total number of neurons and

synapses: issues of precision and bias. Trends Neurosci. 1999, 22:51-61. Review

Wiederkehr A, Staple J, Caroni P. The motility-associated proteins GAP-43, MAR-

CKS, and CAP-23 share unique targeting and surface activity-inducing properties.

Exp. Cell Res. 1997, 236:103-116

Williams EJ, Furness J, Walsh FS, Doherty P. Characterisation of the second mes-

senger pathway underlying neurite outgrowth stimulated by FGF. Development

19941685-19941693.

Winningham-Major F, Staecker JL, Barger SW, Coats S, Van Eldik LJ. Neurite

extension and neuronal survival activities of recombinant S100 beta proteins that

differ in the content and position of cysteine residues. J. Cell Biol. 1989, 109:3063-

3071

Witkin AP. Scale-space filtering. In Proc. 4th Int. Joint Conf. on Artificial Intell.

1983:1019-1022

WxWindows documentation. http://www.wxwindows.org

Zheng Q, Milthorpe BK, Jones AS. Direct neural network application for automated

cell recognition. Cytometry. 2004, 57A:1-9

Zhu SC, Yuille A. Region competition: unifying snakes, region growing, and

Bayes/MDL for Multiband Image Segmentation. IEEE Trans. Pat. Anal. Mach. In-

tell. 1996, 18

Zucker SW. Region growing: childhood and adolescence. Comp. Graphics Image

Proc. 1976, 5:382-399

110


